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Abstract

In this short paper we develop a function in lambda calculus which
normalizes another lambda term given as an argument. I.e. we sim-
ulate computation of lambda calculus (i.e. beta reduction) within
lambda calculus.

The normalizing function needs only one partial function to do
the job. All other used functions are total. The same key idea is used
when proving that all computable functions have a Kleene Normal
Form.

In this paper a programming notation for lambda calculus is used
in order to make the subject accessible for programmers and not only
for mathematicians.

For comments, questions, error reporting feel free to open an issue
at https://github.com/hbr/Lambda-Calculus
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1 Introduction

In this paper we develop a lambda term which can evaluate an ar-
bitrary other lambda term. This is similar to the universal turing
machine which can simulate an arbitrary turing machine.

Why is this interesting?
Firstly it an interesting programming exercise. It might be surpris-

ing that it is not very difficult to write a simulator of lambda terms
in lambda calculus.

Secondly it is a demonstration of the computational power of lambda
calculus. Lambda calculus can evaluate itself.

Thirdly it shows that any computation can be transformed into
something similar to Kleene’s normal form of computation which ba-
sically says that any computable function needs only one partial func-
tion.

Let’s look into the last point a little bit.
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In the beginning of the 20th century 3 definitions of computatable
functions had been given. Kurt Gödel’s recursive functions, Alan Tur-
ing’s automatic machines (today called Turing machines) and Alonzo
Church’s lambda calculus. It has been proved that these definitions
are equivalent i.e. for each definition of a computable function in one
formalism and equivalent definition in the other formalisms can be
found.

In all three formalisms you can define functions which are total
(i.e. terminate for all input values) and which are partial (i.e. are not
guaranteed to terminate for all input values).

For recursive functions Stephen Kleene has shown that any com-
putable function can be transformed into another computable function
which has only one partial subfunction. For recursive functions the
total functions are the primitive recursive functions. Partial func-
tions include µ-recursive functions which search the minimal natural
number satisfying a certain predicate. Since such a minimal number
might not exist, µ-recursive functions are not guaranteed to terminate.
µ-recursive functions are the equivalent of while loops in imperative
programming.

For Turing machines Alan Turing invented the universal (Turing)
machine which contains only one potentially not halting submachine
all other submachines being guaranteed to halt on any valid input.

Since all models of computation are equivalent it must be pos-
sible to construct a universal lambda term which is able to do any
computation in lambda calculus using only one partial function.

In order to define such a universal lambda term we go step by step.
In section 2 we give a compact introduction to lambda calculus.

This section introduces the basic definitions of lambda calculus, the
way computation is done via beta reduction, it defines normal forms
and shows that normal forms are unique via the Church Rosser the-
orem and finally it introduces leftmost reduction as a canonical way
to reduce lambda terms. Those of you familiar with lambda calculus
can skip this chapter.

The next section 3 introduces a programming notation for lambda
calculus. Using the mathematical notation for lambda calculus can be
very tedious. Programming notation in ascii is much more readable
and gives the connection to functional programming.

In the programming notation section we introduce the encodng of
boolean values, pairs, optional values and natural numbers and some
basic functions on these values. All lambda terms introduced in this
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section are total in the sense that beta reduction finally converts the
terms into their corresponding normal forms which are guaranteed to
exist.

In the section 4 we introduce a lambda term we represents a partial
function. This is the only partial function we need to construct the
simulator of a lambda term in lambda calculus.

Within section 5 a nameless representation of lambda terms is
introduced which is equivalent to the standard definition of lambda
terms given in the preliminaries 2. The nameless representation has
the advantage that it avoids any need to rename variables because of
clashes between local variable names and variables defined in an outer
context.

The nameless representation makes the construction of the lambda
simulator simpler because it avoids the nasty topic of renaming vari-
ables.

The nameless representation just needs a shift operator and a def-
inition of beta-reductions based on the shift operator. All other defi-
nitions are same as in the standard representation.

The core of the paper is section 6 which constructs a lambda term
which can evaluate other lambda terms.

In order to evaluate lambda terms we have to encode the lambda
terms. This is necessary, because lambda calculus cannot inspect
lambda terms given in its raw form. An encoding for lambda terms is
shown in a manner such that any the encoding of any lambda term is
straightforward.

Note that Kleene’s normal form and Turing’s universal machine use
encodings as well. Both have chosen to transform the recursive func-
tion or the Turing machine respectively into a corresponding Gödel
number. We could have used Gödel numbers as well. But the encod-
ing given in this paper seems to be more natural and uses the basic
idea of algebraic data types of functions languages.

To demonstrate the connection of the encoding of lambda terms in
lambda calculus a similar encoding of lambda terms in the program-
ming language Ocaml is given. This is just for illustrative purposes.

In the next steps we construct recursive functions on encoded
lambda terms, redex reduction and leftmost reduction on encoded
lambda terms.

Finally we define a function which reduces any encoded lambda
term into its normal form of loops forever in case the normal form does
not exist. The normalization function is the only function which uses
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the partial function defined in section 4. The normalization function
is just an iteration of a leftmost reduction step which terminates when
there is no more leftmost reduction step possible i.e. when the term
is in normal form.

2 Preliminaries

This section contains a short introduction into lambda calculus and
the used notation. The details can be studied in the papers [1], [2]
or [3].

The notion of inductively defined sets and relations and the corre-
sponding proof methods are described in detail in [1] and in [4].

For those familiar with lambda calculus and its notations the sec-
tion can be skipped.

2.1 Basic Definitions in Lambda Calculus

Definition 2.1. A lambda term is either a variable name (from a
countably infinite set of variable names), an application of a term to
another or a lambda abstraction. It is defined by the grammar

t := x variable
| tt application
| λx.t lambda abstraction

Application is left-associative i.e. abc is parsed as (ab)c and λxy.e
is used as an abbreviation for λx.λy.e.

Definition 2.2. A redex (reducible expression) is a lambda term of
the form

(λx.e)a

λx.e is called the function term of the redex and a is called the argu-
ment term of the redex.

The expression is called reducible because it can be reduced in one
step to

e[a/x]

which is the body e where all free occurrences of the variable x are
replaced by the argument a. Note that it might be necessary to rename
some of the bound variables in the body e such that there is no collision
with the free variables in the argument term a (i.e. avoid variable
capture).
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Reducing a redex is a computation step in lambda calculus. Since
more than one redex can be contained within a lambda term, the next
computation step is not unique. Usually different steps can be made.
Therefore the basic reduction step, a beta reduction is not a function,
it is a relation relating the term before and after the reduction.

Definition 2.3. Beta Reduction: t
β→ u says that the term t reduces

to the term u by reducing one of the redexes in t. The relation is
defined inductively by the rules

1. (λx.e)a
β→ e[a/x]

2.
a

β→ t

ab
β→ tb

3.
b

β→ v

ab
β→ av

4.
t

β→ u

λx.t
β→ λx.u

We write a
β∗
→ b if a reduces to b in zero or more steps.

The reduction of a lambda abstraction results in a lambda ab-
straction because of the fourth rule. However due to the first rule the
reduction of an application can be anything depending on the body
of function term and the argument. Therefore we define a base term
which is an application maintaining its structure during reduction.

Definition 2.4. A base term is a variable applied to zero or more
terms. The set of all base terms BT is defined inductively by the
rules:

1. x ∈ BT

2.
t ∈ BT

tu ∈ BT

A computation in lambda calculus is finished if there is no more
redex in a term.

Definition 2.5. A term t is in normal form if it does not contain
a redex. We call NF the set of terms in normal form. It is defined
inductively by the rules
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1. x ∈ NF

2.
t ∈ NF t ∈ BT u ∈ NF

tu ∈ NF

3.
e ∈ NF

λx.e ∈ NF

Note that in the second rule the condition t ∈ BT is essential. Other-
wise t could be a lambda abstraction in normal form and tu would be
a redex which is not in normal form by definition.

It is evident from the rules that a term in normal form is either
a base term or a lambda abstraction. Furthermore all subterms of a
term in normal form are in normal form as well.

Note that it is perfectly possible that a lambda term cannot be
reduced to normal form. Consider the term ω := λx.xx. The term
ωa is a redex which reduces to aa. If we apply ω to itself we get an
infinite reduction sequence.

ωω = (λx.xx)ω
β→ ωω
β→ ωω
β→ . . .

A similar divergence is possible with the term U := λxf.f(xxf).

UUf . . . = (λxf.f(xxf))Uf . . .
β→ f(UUf) . . .
β→ f(f(UUf)) . . .
β→ . . .

As opposed to the term ωω the term UUf . . . might have a normal
form if the function f depending on the arguments . . . throws away its
first argument UUf which is responsible for the possible divergence.

Beside the notion of beta reduction we need the notion of beta
equivalence.

Definition 2.6. Two terms t and u are beta equivalent expressed as

t
β∼u if t can be transformed into u using zero or more forward or

backward beta reduction steps. The relation
β∼ is defined inductively

by the rules
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1. Reflexivity: t
β∼t

2. Forward:
t
β∼u u

β→ v

t
β∼v

3. Backward:
t
β∼u v

β→ u

t
β∼v

2.2 Confluence - Church/Rosser

As seen in the definition of beta reduction 2.3 a beta reduction step
is not unique, because a term a might contain more than one redex.

I.e. a
β→ b and a

β→ c is possible for different terms b and c.
If we want to use lambda calculus as a model of computation, then

at least the final result (the normal form, if it exists) shall be unique.
In order to prove that, the Church Rosser theorem is necessary.

Theorem 2.7. Church Rosser theorem: If a reduces to b in zero or
more steps (a

β∗
→ b) and a reduces to c in zero or more steps (a

β∗
→ c),

then there exist a term d which is a common reduct of b and c.

a
β∗
→ b

↓β∗ ↓β∗

c
β∗
→ ∃d

I.e. even if a reduction sequence goes via different paths, there is al-
ways a common reduct where the paths meet. Because of this theorem
the lambda calculus is characterized as confluent.

Proof. See e.g. [1] or [3].

The Church Rosser theorem has the following important corollaries
that normal forms are unique and beta equivalent terms have common
reducts.

Corollary 2.8. Uniqueness of Normal Forms: If t
β∗
→ u and u is in

normal form, then this normal form is unique.

Proof. Assume that u and v are different normal forms of t. Because

of t
β∗
→ u and t

β∗
→ v and the Church Rosser theorem there exist a

common reduct of the terms u and v. Since u and v are in normal
form they only reduce to themselves in zero steps i.e. they have to be
identical.
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Corollary 2.9. For two beta equivalent terms t
β∼u there exists a com-

mon reduct v such that t
β∗
→ v and u

β∗
→ v.

Proof. If t and u are the same terms, then the common reduct is the
term itself.

If t and u are not the same terms then by the definition of beta
equivalence 2.6 there is always an equivalence path of one of the forms

t
β∼a β→ b

β∼u
t
β∼b β← a

β∼u

For the forward step assume as an induction hypothesis that t and a
have the common reduct c. Then the Church Rosser theorem guar-
antees the existence of a common reduct d of b and c which is also a
common reduct of t and b.

For the backward step assume as an induction hypothesis that t
and b have the common reduct d. By definition of beta reduction 2.3
d is also a reduct of a. Therefore d is a common reduct of t and a.

2.3 Leftmost Reduction

Beta reduction 2.3 is not unique because there might be more than one
redex which can be contracted. In order to have a unique reduction
we define leftmost reduction which contracts the leftmost redex in a
lambda term.

Definition 2.10. Leftmost reduction: We write a
βlm→ b if a reduces

to b by reducing the leftmost redex in a. The relation
βlm→ is defined

inductively by the rules

1. (λx.e)a
βlm→ e[a/x]

2.
t
βlm→ u t is an application

tv
βlm→ uv

3.
t ∈ NF t ∈ BT u

βlm→ v

tu
βlm→ tv

4.
t
βlm→ u

λx.t
βlm→ λx.u

9



The second rule guarantees that a redex in the head position is re-
duced. The third rule guarantees that only a leftmost redex can be
reduced (all terms to the left of u are base terms in normal form.

Leftmost reduction is unique because all 4 rules are mutually ex-
clusive.

Theorem 2.11. Leftmost reduction is normalizing If there is a re-

duction t
β∗
→ u and u is in normal form, then the normal form u can

be found by zero or more leftmost reduction steps t
β∗
lm→ u.

Proof. See chapter 11.4 in [3]

3 Programming in Lambda Calculus

3.1 Programming Notation

The mathematical notation described in section 2.1 is not very conve-
nient to express complicated lambda terms. In order to handle com-
plex lambda terms more conveniently we use a programming language
notation as defined in [2].

The correspondence between lambda terms in mathematical no-
tation and lambda terms in programming notation is given by the
following table

x x

ab a b

λx.e \ x := e

The symbol λ is replaced by the ascii backslash \ like in the pro-
gramming language haskell and the dot is replaced by the ”is defined
as” symbol := .

Some examples:

λxy.x \ x y := x

λxyf.fxy \ x y f := f x y

Furthermore we allow definitions like

true := \ x y := x

where the name true is defined as the lambda term \ x y := x. Note
that := is right associative.
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Definitions have to be acyclic i.e. recursion is not allowed. The
lambda term is always considered as the lambda term where all defi-
nitions are expanded.

We define functions more handy as

true x y := x

which we consider equivalent to the above definition.
Inside an abstraction local definitions are allowed

fst p :=

p f where

f x y := x

-- which is equivalent with

fst := \ p := p (\ x y := x)

Local definitions like definitions have to be acyclic i.e. the lambda
term is considered as the lambda term where all local definitions are
expanded.

In the following sections we give definitions of commonly used func-
tions in programming notation. The sections are kept short and con-
cise. For more details look into [2].

3.2 Booleans

Boolean values are represented in lambda calculus as functions taking
two arguments. The boolean value true returns the first argument and
the boolean value false returns the second argument. Conjunction,
disjunction and negation can be defined easily.

true x y := x

false x y := y

and a b := a b false

or a b := a true b

not a := a false true

As described above the symbol true is just an abbreviation for the
lambda term λxy.x and the symbol false is just an abbreviation for
the lambda term λxy.y. Both terms are in normal form.

If the terms true and false are applied to two arguments a and
b then they return the first or the second argument. As long as the
arguments are normalizing (i.e. reduce in zero or more steps to normal
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form) then the terms true a b and false a b are normalizing as
well.

The same applies to any term f a b as long as f reduces in zero
or more steps to true or false.

3.3 Pairs

The function pair takes three arguments. A pair of the terms a and b

is obtained by applying the function only to these arguments pair a

b. The first and second element of a pair can be obtained by providing
the third argument.

pair a b f := f a b

fst p := p (\ a b := a)

snd p := p (\ a b := b)

3.4 Natural Numbers

Natural numbers are usually represented in lambda calculus by their
Church encoding as Church numerals.

A Church numeral is a function taking two arguments f and s. It
applies the term f n times on the argument s in order to represent
the natural number n.

zero f s := s

succ n f s := f (n f s) -- or n f (f s)

one := succ zero

two := succ one

...

The function is-zero applies the function \ x := false n times
upon the start term true. For the Church numeral zero the value
true is returned and for any other numeral the value false is re-
turned.

Addition of the numerals a and b just applies a times the function
succ on the start value b.

is-zero n :=

n (\ x := false) true

(+) a b := a succ b
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In order to do recursion with Church numerals we need a trick.
We compute pairs where the first component is the argument and the
second component is the value of the function. Finally the argument
is thrown a way.

The iteration starts with pair zero s where s is the result of
the recursive function for the number zero. The iteration function
has to decompose the pair consisting of the predecessor number and
the predecessor result and compute the pair consisting of the actual
number and its result.

nat-rec n f s

-- Do recursion with the function ’f’ where ’f’ takes

-- as a first argument the predecessor number and as

-- a second argument the result of the predessor and

-- computes the result of the actual number.

-- Recursion starts with ’s’ for the number zero.

:=

snd (n step (pair zero s)) where

step p :=

p (\ n0 r0 := pair (succ n0) (f n0 r0))

Having the recursor nat-rec many other functions can be defined.

pred n :=

nat-rec (\ n0 r0 := n0) zero

(-) a b := b pred a

(<=) a b := is-zero (a - b)

(=) a b := (a <= b) and (b <= a)

(<) a b := (succ a <= b)

lt-eq-gt a b x y z

-- if ’a < b’ then return ’x’,

-- if ’a = b’ then return ’y’,

-- if ’a > b’ then return ’z’

:=

-- Note ’not (a <= b)’ implies ’a > b’

-- ’not (b <= a)’ implies ’a < b’

-- ’(a <= b)’ and ’(b <= a)’ implies ’a = b’
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(a <= b) ((b <= a) y x) z

3.5 Optional Values

A lambda term representing an optional value takes two arguments.
The first argument is a function which is applied to the optional value
if present. The second argument is the return value in case no optional
value is present.

some x f n := f x

none f n := n

4 Partial Functions

All functions introduced in the previous chapter 3 are total functions
in the following sense: As long as appropriate arguments are given (all
values strongly normalizing and all functions applied to appropriate
arguments are strongly normalizing) the resulting values are strongly
normalizing as well.

However sometimes functions are needed which compute a certain
value but are not guaranteed to terminate. I.e. even when applied to
appropriate arguments they might not reach a normal form.

In imperative programming there are while loops which repeat a
loop as long as a certain condition is valid and it is not guaranteed
that a state is reached where the condition of the while loop is no
longer valid i.e. the while loop terminates.

In this chapter we develop a function in lambda calculus which
corresponds to a while loop in imperative programming. We look for
a function fixpoint f s with the following specification:

• Start with the value s.

• The function f takes a value and returns an optional value
(see 3.5).

• Iterate the function f on the start value as long as it returns
some v.

• As soon as fv returns none the value v is the result of fixpoint
f s.

The function is partial in the sense that it might be possible that
fv never returns none in the course of the iteration.
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In order to do a possibly unlimited iteration we use the function

U g x := g (x x g)

which has the following reduction behaviour

U U g s = (\ g x := g( x x g)) U g s

~> g (U U g) s

The function g when applied to the arguments UUg and s has the
possibility to return one of

1. U U g s1

2. r

In the first case the iteration continues with the next iteration
value s1. In the second case the result r is returned.

fixpoint f s :=

U U g s where

g z v :=

f v z v

U g x :=

g (x x g)

To verify the correctness let’s see how the iteration works

U U g v

~> g (U U g) v

~> f v (U U g) v

where v is initially the start value s.
Now there are two possibilities:

1. f v returns some v1 where v1 is the next iteration value. In this
case f v (U U g) v returns U U g v1 and the iteration contin-
ues.

2. f v returns none. In this case f v (U U g) v returns v
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5 De Bruijn Indices

5.1 Nameless Representation

The names of bound variables are not important. Terms which differ
only in the names of the bound variables are equivalent. E.g. the
terms λx.x and λy.y are equivalent and the terms λxy.x and λab.a
are equivalent. The terms λxy.x and λab.b are not equivalent.

Furthermore it is important to avoid interference of free and bound
variables i.e. to avoid variable capture. This requires sometimes to
rename bound variables such that their names are different from free
variables or from variables bound by outer binders.

These inconveniences can be avoided by using De Bruijn indices as
variable names. The lambda terms with De Bruijn indices are formed
according to the grammar

t := j De Bruijn index
| tt application
| λt lambda abstraction

This is a nameless representation. The nameless representation
of a lambda term can be obtained from the named representation by
using De Bruijn indices instead of variable names. The De Bruijn
index of a variable is obtainded by the following:

• Bound variable: The De Bruijn index j of the variable x is the
number of binders between the occurrence of the variable x and
its closest binder λx looking inside out.

• The De Bruijn index of the free variable x is j + nB where j is
the position of its first occurrence in a left to right scan and nB

is the number of binders at the occurrence of the free variable
looking inside out.

Usually nameless representations are only needed for combinators (com-
binators are lambda terms with no free variables).

Some examples:
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λx.x λ0 No binder between x and λx

λxy.y λλ0 No binder between y and λy

λxy.x λλ1 One binder between x and λx

x(λy.xyz) 0(λ102) x and z are free variables with the left to
right positions 0 and 1. The first occur-
rrence of x is not within a binder. The
second occurrence of x and the first oc-
currence of z are within one binder.

I.e. there is no one to one mapping between a variable name and its
De Bruijn index. The De Bruijn index of the same variable is different
if there are a different number of binders between the occurrence of a
variable and its closest binder.

5.2 Shift Operator

In order to put a term t outside a binder into the binder we have to
adapt the De Bruijn indeces used in the term. The index i outside the
binder becomes i+ 1 inside the binder. However if i is already bound
within t it must not be changed.

More generally we have to able to put a term t inside n more
binders. In order to do this we define a shift operator.

The shift operator ↑nb shifts all De Bruijn indices in a term t up by
n starting from the cutoff index b and leaves all indices strictly below
the cutoff index unchanged.

↑nb t :=


↑nb i :=

{
i if i < b
i+ b otherwise

↑nb (tu) := (↑nb t)(↑nb u)
↑nb (λt) := λ(↑nb+1)

In order to put a term t in an environment with n more binders
we write ↑n0 t.

5.3 Beta Reduction

In the representation with names the redex (λx.e)a is reduced to e[a/x]
where all free occurrences of the variable x in e are replaced by the
argument term a.

In the nameless representation with De Bruijn indices a redex has
the form (λe)a. The De Bruijn index of the variable of the reduced
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binder is 0 (or 0 + b if the variable x occurs within more binders than
the toplevel binder). I.e. depending on how deeply nested we have to
replace the De Bruijn index 0 + b by the argument a.

Let’s assume we replace the variable with the index i by the ar-
gument term. I.e. between the reduced binder λe and the actual
occurrence of the variable there are i binders.

All indices strictly below i are bound by binders inside the reduced
binder. These indices are left unchanged.

All indices strictly above i are either free variables or bound by
binders outside the reduced binder. They go down by one, because
one binder is removed.

The index i represents the variable of the reduced binder. It has
to be replaced by the argument a. But the argument a is valid at the
same binding level as the reduced lambda abstraction λe (the redex
is (λe)a. By replacing the index i it enters i more binders. Therefore
we have to replace the De Bruijn index i by ↑i0 a.

The beta reduction in nameless form reads

(λe)a
β→ e[a/0]

using the following recursive definition of e[a/i]

e[a/i] :=


j[a/i] :=


j if j < i
↑i0 a if j = i
j − 1 if j > i

(tu)[a/i] := t[a/i] u[a/i]
(λt)[a/i] := t[a/(i+ 1)]

6 Simulator

In this chapter we develop a lambda term normalize which computes
the normal form of a term, if it exists, and loops forever, if no normal
form exists.

It is not possible to feed a lambda term directly into the function
normalize. We have to find an encoding of a lambda term which
allows the function to inspect the term.

Furthermore we do not want to struggle with variable renamings,
therefore we use the canonical form of lambda terms with De Bruijn
indices.
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6.1 Encoding of Lambda Terms in Lambda
Calculus

We use the canonical form of lambda terms with De Bruijn indices
which are formed according to the grammar as described in the chap-
ter 5.1

t ::= i De Bruijn index of the variable
| tt application
| λt lambda abstraction

We need 3 constructors to encode an arbitrary canonical lambda
term as a lambda term. One constructor for variables (i.e. De Bruijn
indices), one for applications and one for lambda abstractions.

An encoded lambda term is a function with 4 arguments:

1. b: Church numeral representing the number of bound variables.

2. v: Function transforming the Church numeral of the De Bruijn
index of the variable and the number of bound variables into the
result term of the variable.

3. a: Funktion transforming the result terms of the function term
and the argument term of an application into the result term of
the application.

4. l: Function transforming the result term of the body of the ab-
straction into the result term of the lambda abstraction.

We assign types to the arguments of the encoded lambda term
(note that the types are just for our understanding of the arguments;
the lambda calculus is untyped)

b: Nat -- ’Nat’ is a Church numeral

v: Nat -> Nat -> R -- ’R’ is the type of the result

a: R -> R -> R

l: R -> R

An encoded lambda term has therefore the type

Lam = ( Nat ->

(Nat -> Nat -> R) ->

(R -> R -> R) ->

(R -> R) ->
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R

)

Now it is easy to design the 3 necessary constructors.

var k b v a l := v k b

app x y b v a l := a (x b v a l) (y b v a l)

lam x b v a l := l (x (succ b) v a l)

1. The constructor for a variable with De Bruijn index k is a func-
tion mapping the 4 arguments into an application of the argu-
ment v to the index k and the number of the bound variables b
(note that numbers are encoded as Church numerals).

2. The constructor for an application of the function term x to
the argument y is a function mapping the 4 arguments into an
application of the argument a onto the results obtained from the
function term xbval and the argument term ybval.

3. The constructor for a lambda abstraction with body x is a func-
tion mapping the 4 arguments into an application of the argu-
ment l onto the result obtained from the body applied to the
arguments x (succ b) v a l. Note that the number of bound vari-
ables has to be increased by one because the lambda abstraction
binds one more variable.

We show for the lambda terms λx.x and λxy.x the mathematical
notation, the notation in program form, the mathematical notation of
the canonical form with De Bruijn indices and the encoded term in
program notation.

Math Progr Notation De Bruijn Encoded

λx.x \ x := x λ0 lam (var zero)

λxy.x \ x y := x λλ1 lam (lam (var one))

Note that the term in program notation and the encoded term in
program notation are different (to get the complete picture you have
to expand the abbreviations of lam, var, one and zero). I.e. the en-
coded term is much more complex than the original term. The added
complexity makes it possible to inspect the structure of a lambda term
within lambda calculus.

In order to demonstrate the handling of encoded lambda terms we
show a function which computes the number of subterms (including
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the term) of a lambda term. The number of subterms is defined recur-
sively. A variable has one subterm (the variable itself), an application
has one more subterm than the sum of the subterms of the function
and the argument term and an abstraction has one more subterm than
the number of subterms of the body.

size t :=

t

zero

(\ k b := one)

(\ x y := succ (x + y))

(\ x := succ x)

6.2 Encoding in e.g. Ocaml

An encoding of a lambda term in lambda calculus is just an iteration
over the lambda term. In order to get more familiar with this type of
encoding we compare it with an encoding in the language Ocaml and
demonstrate that the above shown encoding is just an implementation
of a fold function in Ocaml.

A lambda term in nameless form could be encoded in Ocaml as
the algebraic type

type lam =

| Var of int

| App of lam * lam

| Lam of lam

Having this we can define a recursive function fold which does the
same thing as the above encoding in ocaml.

let rec fold (t: lam) (b: int)

(v: int -> int -> ’r)

(a: ’r -> ’r -> ’r)

(l: ’r -> ’r) : ’r =

match t with

| Var k ->

v k b

| App (t, u) ->

a (fold t b v a l) (fold u b v a l)

| Lam t ->

l (fold t (b + 1) v a l)
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Note that the partial call fold t has the same type as a lambda term
encoded in lambda calculus.

6.3 Recursion

The encoding of a lambda term iterates over the structure of the
encoded lambda term in a bottoms up manner. The bottom terms
are the variables where the argument v computes the result term for
the variable. The intermediate terms representing an application or
a lambda abstraction can use the computed results of the subterm(s)
and compute the result for the corresponding term.

In a real recursion the functions doing the work of the intermedi-
ate terms (application and lambda abstraction) need not only access
to the result of the subterm(s) but also to the encodings of the sub-
term(s). In order to achieve this type of recursion in lambda calculus
we use the trick that the recursion not only computes the result of
the corresponding term. It computes a pair consisting of the term
and the corresponding result. At the end we throw away the encoded
term (similar to the recursor nat-rec in section 3.4).

The 4 arguments b, v, a and l in a real recursion have the types

b: Nat -- Bound vars

v: Nat -> Nat -> R -- De Bruijn -> Bound vars -> R

a: Lam -> R -> Lam -> R -> R

l: Lam -> R -> R

where Lam is the type of the encoded lambda terms. The function
doing recursion has the structure

lam-rec t b v a l :=

snd (t b v0 a0 l0) where

v0 k b := ...

a0 p1 p2 := ...

l0 p1 := ...

The function v0 takes the De Bruijn index k and the number of
bound variables b (both encoded as Church numerals) and returns the
pair consisting of the encoding of the variable with De Bruijn index k
and the result.

v0 k b :=

pair (var k b) (v k b)
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The function a0 takes the two pairs p1 and p2 and returns a pair
consisting of the encoding of the application and the result of the
application

a0 p1 p2 :=

p1 (\ t1 r1 :=

p2 (\ t2 r2 :=

pair (app t1 t2) (a t1 r1 t2 r2)

)

)

The function l0 takes the pair p and returns the pair consisting of
the lambda abstraction and the result of the lambda abstraction

l0 p1 :=

p1 (\ t r := pair (lam t) (l t r))

Having the function lam-rec which does recursion and not just
iteration it is easy to inspect an encoded lambda term, and see if it is
a variable, an application or an abstraction and return the arguments.

is-var t

-- Check if ’t’ is a variable. If yes, return ’some j’

-- where ’j’ is the De Bruijn index of the variable.

-- If no, return ’none’

:=

lam-rec t zero

(\ j b := some j)

(\ t tr u ur := none)

(\ t tr := none)

is-app t

-- Check if ’t’ is an application. If yes, return ’some p’

-- where ’p’ is the pair consisting of the function term

-- and the argument term. If no, return ’none’

:=

lam-rec t zero

(\ j b := none)

(\ u ur v vr := some (pair u v))

(\ t tr := none)
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is-lam t

-- Check if ’t’ is a lambda abstraction. If yes,

-- return ’some bdy’, otherwise return ’none’.

:=

lam-rec t zero

(\ j b := none)

(\ f fr a ar := none)

(\ bdy bdyr := some body)

Note that in the functions is-app and is-lam it is important to have
access to the subterms and not only to the results of the subterms.
The results of the subterms are thrown away. In order to check if a
term is an application it is not necessary to know if the subterms are
applications.

6.4 Redex Reduction

In order to do reduce a redex we just have to transcribe the recursive
definition of the shift operator ↑nb t and the substitution e[a/i] defined
in the chapter 5.1 into the encoding defined in this chapter.

shift n b t

-- Shift all De Bruijn indices in the term ’t’ up by ’n’

-- starting at the cutoff index ’b’.

:=

t b v app lam where

v i b := (i < b) (var i) (var (i + n))

-- ’app’ and ’lam’ are just the constructors

-- for application and lambda abstraction.

subst t i a

-- Replace in the term ’t’ the De Bruijn index ’i’ by

-- the term ’a’.

:=

t i v app lam where

v j b :=

lt-eq-gt j b

(var j) -- case j < b

(shift b zero a) -- case j = b

(pred j) -- case j > b
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6.5 Leftmost Reduction Step

A leftmost reduction step t
βlm→ u is defined formally in 2.10.

The function call reduce-leftmost t where t is an encoding of
a lambda term shall find the leftmost (sometimes also call leftmost-
outermost) redex in the term and reduce it. The function shall return
the optional reduced term. The result is an optional term because the
term t might already be in normal form.

The following cases have to be distinguished:

1. A variable is in normal form. No leftmost reduction is possible.

2. The term is an application t1t2:

(a) The application has the form (λt1)t2: The application re-
duces leftmost to t1[t2/0].

(b) Otherwise:

i. t1
βlm→ t1r: t1t2

βlm→ t1rt2

ii. t1 in normal form and t2
βlm→ t2r: t1t2

βlm→ t1t2r

iii. t1 and t2 are in normal form: t1t2 is in normal form as
well. Note that t1 cannot be an abstraction. This case
has already been handled above.

3. The term is an abstraction. If t
βlm→ tr then λt

βlm→ λtr. Otherwise
the abstraction is in normal form.

reduce-leftmost t

-- Reduce the leftmost redex in ’t’ and return ’some tr’

-- if there is one and ’none’ if the term is in normal

-- form.

:=

lam-rec zero v a l where

v j b :=

None

a t1 r1 t2 r2 :=

is-lam t1

(\ bdy := -- contract redex

subst bdy zero t2)

(r1

(\ t1r := some (app t1r t2))

(r2
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(\ t2r := some (app t1 t2r))

none))

l t r :=

r (\ tr := some (lam tr)) none

6.6 Normalization

Having the function reduce-leftmost which performs a leftmost re-
duction step and the function fixpoint defined in chapter 4 it is trivial
to define a function normalize which computes the normal form of
any lambda term given as an encoding of the lambda term.

normalize t

-- Compute the normal form of the encoded lambda

-- term ’t’ by applying a leftmost reduction strategy.

-- If the term ’t’ does not reduce to a normal form,

-- the function does not terminate.

:=

fixpoint reduce-leftmost t
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