
Lambda Calculus - Step by Step

Helmut Brandl
(firstname dot lastname at gmx dot net)

Abstract

This little text gives a step by step introduction into untyped
lambda calculus. All needed theory is explained and no special know
how is assumed. Although elementary, all important theorems about
untyped lambda calculus including some undecidability theorems are
given and proved within this text.

It has been tried to use a notation which is easy to understand
with a lot of graphic notation to support a good intuition about the
presented material.

Contents

1 Motivation 3

2 Inductive Sets and Relations 5
2.1 Inductive Sets . 5
2.2 Inductive Relations . 7
2.3 Diamonds and Confluence 12

3 Lambda Terms 17
3.1 Basic Definitions . 17
3.2 Simple Computation with Combinators 22
3.3 Confluence - Church Rosser Theorem 25

4 Computable Functions 32
4.1 Boolean Functions . 32
4.2 Composition of Decomposition of Pairs 33
4.3 Numeric Functions . 34
4.4 Primitive Recursion 36

1

4.5 Some Primitive Recursive Functions 37
4.6 General Recursion . 41

5 Undecidability 43

2

1 Motivation

Why study lambda calculus?
Let us put the question in some historical context. At the be-

ginning of the 20th century the famous mathematician David Hilbert
challenged the mathematical community by the statement that math-
ematical problems must be decidable. At the 1930 annual meeting of
the Society of German Scientists and Physicians he made his famous
quote “We must know, we will know”.

David Hilbert

“Entscheidungsproblem” (Decision
Problem). Mathematics must be
decidable. “We must know, we will
know!”

Kurt Gödel (1931):

Incompleteness Theorems

Alonzo Church (1936):

Lambda Calculus

Alan Turing (1936):

Turing Machine

Challenge

The young mathematician Kurt Gödel attended the meeting and
expressed some doubts to his collegues about the general decidability
of mathematical statements. One year later in 1931 he published his
famous incompleteness theorems [3]. He proved that for all consis-
tent formal systems which are capable of expressing logic and doing
simple arithmetics there are certain statements which are not prov-
able withing the system but true. These incompleteness theorems are
considered as the first serious blow of Hilbert’s program.

Five years later Alonzo Church [2] and Alan Turing [1] indepen-
dently proved that the decision problem cannot be solved. Alonzo

3

Church invented the lambda calculus and Alan Turing his automatic
machine (today called Turing machine) which are both equivalent in
expressiveness.

Although Church’s lambda calculus has been published slightly be-
fore Alan Turing published his paper on automatic machines usually
Turing machines are used define computability and decidability. Tur-
ing machines resemble more the structure of modern computers than
lambda calculus. A programming language is called Turing complete
if all possible algorithms can be coded within the language. Nobody
talks about lambda complete.

However lambda calculus is a quite fascinating model of computa-
tion. The lambda calculus invented by Alonzo Church is remarkably
simple. It consists just of variables, function applications and lambda
abstractions. But the calculus is sufficiently powerful to express all
computable functions and decision procedures.

Beside its expressive power lambda calculus is used as the theoret-
ical base of functional languages like Haskell, ML, F#.

In this paper we explain the lambda calculus in its purest form as
untyped lambda calculus.

4

2 Inductive Sets and Relations

2.1 Inductive Sets

Set Notation A set is an unordered collection of objects. If the
object a is an element of the set A we write a ∈ A.

A set A is a subset of set B if all elements of the set A are also
elements of the set B. The symbol ⊆ is used to express the subset
relation. The operator := is used to express that something is valid
by definition. Therefore the subset relation is defined symbolically by
A ⊆ B := ∀a . a ∈ A ⇒ a ∈ B. The statement A ⊆ B can always be
replaced by its definition ∀a . a ∈ A⇒ a ∈ B and vice versa.

The double arrow ⇒ is used to express implication. p ⇒ q states
the assertion that having a proof of p we can conclude q. The assertion
p⇒ q is proved by assuming p and deriving the validity of q.

Rule Notation We have often several premises which are needed
reach a conclusion. E.g. we might have the assertion p1∧p2∧ . . .⇒ c.

Then we use the rule notation
p1, p2, . . .

c
or

p1
p2
...

c

to express the same

fact. Evidently the order of the premises is not important.
Variable in rules are universally quantified. Therefore we can state

the subset definition ∀a . a ∈ A ⇒ a ∈ B. in rule notation more

compactly and better readable as
a ∈ A

a ∈ B
. It should be clear from

the context which symbols denote variables.

Inductive Definition of Sets Rules can be used to define sets
inductively. The set of even numbers E can be defined by the two

rules 0 ∈ E and
n ∈ E

n+ 2 ∈ E
. A set defined by rules is the least set

which satisfies the rules. The set E of even number must contain the
number 0 and with all numbers n it contains also the number n+ 2.

The fact that some object is an element of an inductively defined
set must be established by an arbitrarily long but finite sequence of
applications of the rules which define the set. A proof of 4 ∈ E
consists of a proof of 0 ∈ E by application of the first rule and then
two applications of the second rule to reach 2 ∈ E and 4 ∈ E.

5

Rule Induction If we have the fact that an object is an element
of some inductively defined set then we can be sure that it is in the
set because of one of the rules which define the set.

This can be used to prove facts by rule induction. Suppose we want
to prove that some property p is shared by all even numbers. We can

express this statement by the rule
n ∈ E

p(n)
. Note that variables in

rules are implicitly universally quantified, i.e. the rule expresses the
statement ∀n . n ∈ E ⇒ p(n).

It is possible to prove this statement by induction on n ∈ E. Such
a proof consists of a proof of the statement for each rule. In the case
of even numbers there are two rules.

For the first rule we have to prove the the number 0 satisfies the
property p(0).

For the second rule we assume that n ∈ E because there is some
other number m already in the set of even numbers E and n = m+2.
I.e. we have to prove the goal p(m + 2) under the premise m ∈ E.
Because of the premisem ∈ E we can assume the induction hypothesis
p(m). I.e. we can assume m ∈ E and p(m) and derive the validity of
p(m+ 2).

If the proof succeeds for both rules we are allowed to conclude that
the property p is satisfied by all even numbers.

Natural Number Induction It is not difficult to see that the
usual law of induction on natural numbers is just a special case of rule
induction. We can define the set of natural numbers inductively N by
the rules

1. 0 ∈ N

2.
n ∈ N
n′ ∈ N

where n′ denotes the successor of n i.e. 3 is just a shorthand for 0′′′.
The usual induction law of natural numbers allows to prove a

property p for all natural number by a proof of p(0) and a proof
of ∀n . p(n)⇒ p(n′) which are exactly the requirements of a proof by
rule induction.

Grammar Notation In some cases it is convenient to define a set
by a grammar. E.g. we can define the set of natural numbers by all

6

terms n generated by the grammar

n ::= 0 | n′

i.e. we can use the corresponding induction law to prove that all terms
generated by the grammar satisfy a certain property.

This definition is just a special form of the definition of the set of
natural numbers N by the rules

1. 0 ∈ N

2.
n ∈ N
n′ ∈ N

2.2 Inductive Relations

Relations n-ary relations are just sets of n-tuples. A binary rela-
tion r over the sets A and B is a subset of the cartesian product

r ⊆ A×B.

We use the notations (a, b) ∈ r, r(a, b) and a→r b to denote the fact
that the pair (a, b) with a ∈ A and b ∈ B figure in the relation r.

In this paper we need only endorelations i.e. binary relations where
the domain A and the range B of the relation are the same set.

Relation Closure As with sets, relations can be defined induc-
tively.

Definition 2.1. The transitive closure r+ of a relation r is defined
by the rules

1.
r(a, b)

r+(a, b)

2.
r+(a, b), r(b, c)

r+(a, c)

The rules can be displayed graphically. The premises are marked
blue and the conclusion is marked red.

a b a b c
r

r+

r+ r

r+

We called r+ the transitive closure of r, but the fact that r+ is
transitive needs a proof.

7

Theorem 2.2. The transitive closure r+ of the relation r is transitive

i.e.
a→+

r b, b→+
r c

a→+
r c

is valid.

Proof. Assume a →+
r b and prove the goal a →+

r c by induction on
b→+

r c.

1. Goal a→+
r c assuming b→+

r c and that b→+
r c is valid by rule

1 of the transitive closure.
Premise b→r c.
The goal is valid by the assumption a→+

r b, the premise b→r c
and rule 2 of the transitive closure.

2. Goal a→+
r d assuming b→+

r d and that b→+
r d is valid by rule

2 of the transitive closure.
Premises b→+

r c and c→r d.
Induction hypothesis a→+

r c.
The goal is valid by the induction hypothesis a→+

r c, the premise
c→r d and rule 2 of the transitive closure.

Definition 2.3. The reflexive transitive closure r∗ of a relation r is
defined by the rules

1. r∗(a, a)

2.
r∗(a, b), r(b, c)

r∗(a, c)

Graphical representation of the rules:

a a b c

r∗

r∗ r

r∗

Theorem 2.4. The reflexive transitive closure r∗ of the relation r is

transitive i.e.
a→∗

r b, b→∗
r c

a→∗
r c

is valid. Proof similar to the proof of

theorem 2.2.

Definition 2.5. The equivalence closure r∼ of a relation r is defined
by the rules

1. r∼(a, a)

2.
r∼(a, b), r(b, c)

r∼(a, c)

8

3.
r∼(a, b), r(c, b)

r∼(a, c)

Again a graphical representation of the rules:

a

r∼

a b c
r∼ r

r∼

a b c
r∼ r

r∼

Theorem 2.6. The equivalence closure is transitive. Proof similar to
the proof of theorem 2.2.

Theorem 2.7. The equivalence closure is symmetric i.e.
a →∼

r b

b→∼
r a

.

Proof. We proof this theorem in 3 steps. First we proof two lemmas
and then the theorem by induction.

• Lemma 1:
a→r b

a→∼
r b

. Proof. Assume a→r b. We get a→∼
r a by

rule 1 and then a→∼
r b by the assumption and rule 2.

• Lemma 2:
a→r b

b→∼
r a

. Proof. Assume a→r b. We get b→∼
r b by

rule 1 and then b→∼
r a by the assumption and rule 3.

•
a →∼

r b

b→∼
r a

by induction on a →∼
r b.

1. Goal a→∼
r a. Trivial by reflexivity.

2. Goal c→∼
r a assuming that a→∼

r c is valid by rule 2 of the
equivalence closure.
Premises a→∼

r b and b→r c.
Induction hypothesis b→∼

r a.
We get c→∼

r b by the second premise and lemma 2 and then
c →∼

r a by the induction hypothesis and transitivity of the
equivalence closure 2.6.

3. Goal c→∼
r a assuming that a→∼

r c is valid by rule 3 of the
equivalence closure.
Premises a→∼

r b and c→r b.
Induction hypothesis b→∼

r a.
We get c→∼

r b by the second premise and lemma 1 and then
c →∼

r a by the induction hypothesis and transitivity of the
equivalence closure 2.6.

9

Theorem 2.8. All closures are increasing r ⊆ rc, monotonic r ⊆ s⇒
rc ⊆ sc and idempotent rcc = rc (where the superscript c stands for
+, ∗ or ∼).

Proof. We give a proof for the reflexive transitive closure. The proofs
for the other closures are similar.

• Increasing: Goal r(a, b) ⇒ r∗(a, b). By rule 1 we get r∗(a, a).
The assumption r(a, b) and rule 2 imply r∗(a, b).

• Monotonic: Goal
r ⊆ s, r∗(a, b)

s∗(a, b)
. Prove by induction on r∗(a, b).

1. Case a = b. Goal s∗(a, a). Trivial by reflexivity of s∗.

2. Goal s∗(a, c) assuming r ⊆ s and r∗(a, c) is valid because of
rule 2. Premises r∗(a, b) and r(b, c). Induction hypothesis
s∗(a, b).
a →r∗ b →r c
⇓1 ⇓2

a →s∗ b →s c
.

⇓1 is valid by the induction hypothesis. ⇓2 is valid by r ⊆ s.
From the last line and the rule 2 of the reflexive transitive
closure we can conclude s∗(a, c).

• Idempotent: The equality of the relations r∗∗ = r∗ needs a proof
of r∗∗ ⊆ r∗ and a proof of r∗ ⊆ r∗∗.

– r∗ ⊆ r∗∗ is valid because the closure is increasing.

– Goal
r∗∗(a, b)

r∗(a, b)
. Proof by induction on r∗∗(a, b).

1. Case a = b. Goal r∗(a, a). Trivial by reflexivity.

2. Goal r∗(a, c) assuming r∗∗(a, c) is valid because of rule
2. Premises r∗∗(a, b) and r∗(b, c). Induction hypothesis

r∗(a, b).
a →r∗∗ b →r∗ c

⇓1 ⇓2
a →r∗ b →r∗ c

. ⇓1 is valid by the induc-

tion hypothesis. ⇓2 is trivial. r∗ is transitive. Therefore
the last line implies r∗(a, c).

Theorem 2.9. A relation s which satisfies r ⊆ s ⊆ rc has the same
closure as r i.e. rc = sc. Proof:

• rc ⊆ sc by monotonicity.

10

• sc ⊆ rc: sc ⊆ rcc by monotonicity and then use idempotence to
conclude sc ⊆ rc.

Terminal Elements

Definition 2.10. The set of terminal elements Tr of the relation r is
defined by the rule [

a→ b

⊥

]
a ∈ Tr

where ⊥ is used to denote a contradiction and the square brackets [
and] around the rule above the line indicate that the variables not
used outside the bracketed rule are universally quantified in the inner
rule. I.e. in order to establish a ∈ Tr we have to prove ∀b . ¬ (a→r b)
or ∀b . a→r b⇒⊥. Note that the scope of the universal quantification
of the variable a spans the whole rule while the scope of the universal
quantification of the variable b is just the premise of the rule (i.e. the
part above the line).

Theorem 2.11. A terminal element a of a relation r has only trivial

outgoing paths:
a ∈ Tr, a→∗

r b

a = b
.

Proof. By induction on a→∗
r b.

1. Goal a = a. Trivial.

2. Goal a = c assuming that a →∗
r c is valid by rule 2. Premises

r∗(a, b) and r(b, c). Induction hypothesis a = b. Therefore the
second premise states r(a, c) which contradicts the assumption
a ∈ Tr.

Weakly Terminating Elements

Definition 2.12. a is a (weakly) terminating element of the relation
r if there is a path to a terminal element b i.e. a →∗

r b. The set of
weakly terminating elements WTr of the relation r is defined by the

rule
a→∗

r b, b ∈ Tr

a ∈WTr
.

11

Strongly Terminating Elements

Definition 2.13. An object a is strongly terminating with respect to
the relation r if all paths from a end at some terminal element of r.
We define the set of strongly terminating elements STr of the relation
r by the rule [

a→r b

b ∈ STr

]
a ∈ STr

This definition might need some explanation to be understood cor-
rectly. Since the premise of the rule is within brackets, all variables
not occuring outside the brackets are universally quantified within the
brackets (here the variable b).

The rule says that all objects a where all successors b with respect
to the relation are strongly terminating are strongly terminating as
well. The rule is trivially satisfied by all objects which have no succes-
sors i.e. all terminal objects. If the relation r has no terminal objects
then there are no initial objects which are strongly terminating.

If there are terminal elements then step by step strongly terminat-
ing objects can be constructed by the rule that all successors of them
must be strongly terminating (or already terminal). For each con-
structed strongly terminating object it is guaranteed that all paths
starting from it must end within a finite number of steps at some
terminal object of the relation.

An object a without successors with respect to the relation r i.e. if
there are no b with a→r b satisfy the rule, because the premise is sat-
ified vacuously. An object a without successors is a terminal element
by definition. I.e. all terminal elements are strongly terminating.

2.3 Diamonds and Confluence

In this section we define diamonds and confluent relations.
A relation is called confluent if starting from some object following

the relation on different paths of arbitrary length there is always some
other object where the two paths meet. This intuitive definition is
made precise in the following.

A diamond relation is a kind of a confluent relation where one step
different paths can join withing one step.

It turns out that confluence is a rather strong property of a relation.
It guarantees that

12

• all equivalent elements meet at some point

• all paths to terminal elements end up at the same terminal ele-
ment (i.e. terminal elements are unique)

A diamond relation is a superset of a confluent relation which has
already the essential part of confluence. It turns out that a diamond
relation is confluent.

First we define formally the diamond property of a relation. The
diamond property is intuitively a one step confluence.

Definition 2.14. A relation r is a diamond if for all a, b and c there

exists a d such that
a →r b
↓r ↓r
c →r ∃d

holds.

Note that we use the picture

a →r b
↓r ↓r
c →r ∃d

to express the statement

a→r b, a→r c

∃d . b→r d ∧ c→r d
.

The picture notation is more intuitive but not less precise because it
can be translated into the corresponding rule notation which can be
translated uniquely into a statement of predicate logic.

Definition 2.15. A relation r is confluent if r∗ is a diamond.

Theorem 2.16. In a confluent relation r all two r-equivalent elements

meet at some common element in zero or more steps
a →∼

r b
↘∗

r ↓∗r
∃c
.

Proof. By induction on a→∼
r b.

1. a = b. Trivial. Take c = a.

2. Goal
a →∼

r c
↘∗

r ↓∗r
∃e

where a →∼
r c is valid by rule 2. Premises

a→∼
r b and b→r c. Induction hypothesis

a →∼
r b
↘∗

r ↓∗
∃d

.

13

Proof
a →∼

r b →r c
↘∗

r ↓∗r ↓∗r
∃d →∗

r ∃e
. d exists by induction hypothesis, e

exists by confluence.

3. Goal
a →∼

r c
↘∗

r ↓∗r
∃d

where a →∼
r c is valid by rule 3. Premises

a→∼
r b and b←r c. Induction hypothesis

a →∼
r b
↘∗

r ↓∗r
∃d

.

Proof
a →∼

r b ←r c
↘∗

r ↓∗r ↙∗
r

∃d
. d exists by induction hypothesis.

Theorem 2.17. In a confluent relation all paths from the same object
ending at some terminal object end at the same terminal object, i.e.

a→∗
r b, a→∗

r c, b ∈ Tr, c ∈ Tr

b = c

.

Proof. Suppose there are two terminal elements b and c with paths
starting from the object a. By definition of confluence there must be

a d such that
a →∗

r b
↓∗r ↓∗r
c →∗

r d
is valid. Since b and c are terminal objects

by theorem 2.11 there are only trivial outgoing paths from b and c
which implies that b = c = d must be valid.

Theorem 2.18. A diamond relation is confluent.

Proof. We prove this theorem in two steps.

• Lemma: Let r be a diamond. Then
a →∗

r b
↓r ↓r
c →∗

r ∃d
is valid. Proof

by induction on a→∗
r b.

1. Case a = b. Trivial, take d = c.

14

2. Goal
a →∗

r c
↓r ↓r
d →∗

r ∃f
where a →∗

r c is valid because of rule

2. Premises a →∗
r b and b →r c. Induction hypothesis

a →∗
r b

↓r ↓r
d →∗

r ∃e
.

Proof:
a →∗

r b →r c
↓r ↓r ↓r
d →∗

r ∃e →r ∃f
. e exists by the induction hy-

pothesis, f exists because →r is a diamond.

• Theorem: Let r be a diamond. Then
a →∗

r b
↓∗r ↓∗r
c →∗

r ∃d
is valid. Proof

by induction on a→∗
r c.

1. Case a = b. Trivial, take d = c.

2. Goal
a →∗

r b
↓∗r ↓∗r
d →∗

r ∃f
where a →∗

r d is valid because of rule

2. Premises a →∗
r c and c →r d. Induction hypothesis

a →∗
r b

↓∗r ↓∗r
c →∗

r ∃e
.

Proof

a →∗
r b

↓∗r ↓∗r
c →∗

r ∃e
↓r ↓r
d →∗

r ∃f

. e exists by induction hypothesis, f ex-

ists by the previous lemma.

The last theorem stating that diamonds are confluent gives a way
to prove that a relation r is confluent. If r is already a diamond we
are ready since a diamond is confluent. If r is not a diamond we try to
find a diamond relation s between r and its reflexive transitive closure
r∗ i.e. a relation s which satisfies r ⊆ s ⊆ r∗. From the theorem 2.9
we know that s and r have the same reflexive transitive closure i.e.
r∗ = s∗. Since s is a diamond, s∗ is a diamond as well and therefore
r is confluent.

15

In order to find a diamond relation s we can search for rules which
are satisfied by r∗ and are intuitively the reason which let us assume
that r is confluent. Then we can define s inductively as the least
relation satisfying the rules and hope that we can prove that s is a
diamond with r ⊆ s. Note that s ⊆ r∗ is satisfied implicitly by this
approach since r∗ satisfies the rules and s is the least relation satisfying
the rules.

16

3 Lambda Terms

3.1 Basic Definitions

Imagine a mathematical function with one argument which triplicates
the argument and adds five to the result. How would you write such
a function. In mathematics the most straightforward notation is

x 7→ 3× x+ 5.

The name of the variable x is not important. We could write the
same function as y 7→ 3 × y + 5. The variables x and y are called
bound variables because they are bound by the context definining the
function.

Now suppose you want to apply the function to an actual argu-
ment, say 2. I.e. we want to compute (x 7→ 3 × x + 5)(2). We do it
by replacing the variable x in the expression 3 × x + 5 defining the
function by the argument 2 resulting if 3× 2 + 5.

More formally we could write

(x 7→ 3× x+ 5)(2)→ (3× x+ 5)[x := 2] = 3× 2 + 5.

where → means reduces to.
That is already the essence of lambda calculus. In lambda calculus

we write the function
x 7→ 3× x+ 5

as
λx.3× x+ 5.

and we write function application by juxtaposition

(λx.3× x+ 5)2

which reduces to

(λx.3× x+ 5)2→β (3× x+ 5)[x := 2]

. The application of the function to an argument is called a β-
reduction.

β-reduction is done by variable substitution which can be done
purely mechanically i.e. it is the essence of a computation step.

In lambda calculus we have no primitive data types like booleans,
numbers pairs etc. There are only functions. However it is possible to

17

represent data by functions as we shall see later. Data are represented
by functions which capture the essence of what can be done by the
data.

E.g. boolean values can be used to decide between two alterna-
tives. Therefore a boolean value is represented in lambda calculus
by a function with two arguments which chooses the first or second
argument depending on its value.

Numbers are represented by functions which take two arguments,
a function and a start value and the lambda term representing the
number iterates the function n-times on the start value.

Definition of Lambda Terms

Definition 3.1. Let x range over a countably infinite set of variable
names {x0, x1, . . .} and t over lambda terms, then the set of lambda
terms is defined by the grammar

t ::= x | t t | λx.t.

A lambda term is either a variable x, an application a b (the term
a applied to the term b) or an abstraction λx.a.

We use the convention that application is left associative i.e. abc
is parsed as (ab)c.

Nested lambda abstractions λx.λy.t are parsed as λx.(λy.t)
and abbreviated as λxyt.

Free and Bound Variables In the abstraction

λx.t

the variable x is a bound variable. It is not visible to the outside world.
This is the same convention as used in programming languages which
allow the definition of procedures. The formal arguments names of
the procedure/function arguments are just visible to the definition of
the procedure/function and not to the outside world.

Variables which are not bound by a lambda abstraction are free
variables.

Definition 3.2. The set of free variables FV (t) of a lambda term t
is defined by

FV (t) :=


FV (x) = {x}
FV (ab) = FV (a) ∪ FV (b)

FV (λx.t) = FV (t)− {x}

18

Definition 3.3. A lambda term without free variables is called a
closed lambda term.

Evidently bound variables can be renamed without changing the
meaning of the term. E.g. the two lamda terms

λx.x

λy.y

are considered as the same term which represents the identity function.
Traditionally the terms are called α-equivalent because you transform
one into the other by just renaming bound variables.

We write t = u only if u and t are exactly the same term or α-
equivalent terms.

Renaming of bound variables must be done in a way which does
not change the structure of the term. The following two rules must
be obeyed.

1. Keep different bound variables distinct.

legal: λxy.x y rename to λab.a b
illegal: λxy.y rename to λxx.x

2. Do not capture free variables.

legal: λx.x y rename to λz.z y
illegal: λx.x y rename to λy.y y

The second rename renames the variable x into the variable y
which as originally a free variable but captured after the rename.

Variable Substitution

Definition 3.4. The variable substitution a[x := t] is defined by

a[x := t] :=


x[x := t] := t

y[x := t] := y for x ̸= y

(ab)[x := t] := a[x := t] b[x := t]

(λy.a)[x := t] := λy.a[x := t] for x ̸= y ∧ y /∈ FV (t)

Note: The condition on the last line is no restriction because we can
always rename the bound variable y to a fresh variable z different from
x and not occuring free in t since there are infinitely many variables
available.

19

Substitution Swap Lemma The expression

a[x := b][y := c]

describes the term a where in a first step the variable x is substituted
by the term b and then in a second step the variable y is substituted by
the term c. Usually it is assumed that x and y are different variables
and that x does not occur free in c, i.e. x ̸= y ∧ x /∈ FV (c).

However two subsequent substitutions do not commute. The term

a[y := c][x := b]

is in general different from the previous term. Reason: Neither a[x :=
b][y := c] nor a[y := c] do contain any y. But b might contain y
and therefore a[y := c][x := b] might contain y. In order to make
the swapping correct we have to do the substitution b[y := c] before
substituting the variable x by b.

Theorem 3.5. Substitution Swap lemma: Let x ̸= y and x /∈ FV (c).
Then

a[x := b][y := c] = a[y := c]
[
x := b[y := c]

]
. Proof by induction on the structure of a. We use the abbreviations

s1(a) := a[x := b][y := c]
s2(a) := a[y := c]

[
x := b[y := c]

] .

1. a is a variable. Lets call it z. Goal s1(z) = s2(z)

• z ̸= x ∧ z ̸= y: s1(z) = z = s2(z)

• z = x ∧ z ̸= y: s1(z) = b[y := c] = s2(z)

• z ̸= x ∧ z = y: s1(z) = c = s2(z)

2. a is the application t u. Goal s1(t u) = s2(t u). Induction hy-
potheses s1(t) = s2(t) and s1(u) = s2(u)

s1(t u) = s1(t)s1(u) definition of substitution
= s2(t)s2(u) induction hypothesis
= s2(t u) definition of substitution

3. a is the abstraction λz.t. Goal s1(λz.t) = s2(λz.t). Induction
hypothesis s1(t) = s2(t).

s1(λz.t) = λz.s1(t) definition of substitution
= λz.s2(t) induction hypothesis
= s2(λz.t) definition of substitution

20

with appropriate renaming of the bound variable z in order to
avoid variable capture (i.e. z must be different from x and y and
must not occur free neither in a nor in b).

Beta Reduction Now we are able to define the essential compu-
tation step in lambda calculus which is beta reduction. Any term of
the form

(λx.a)b

is called a reducible expression or in short a redex which reduces in
one step to

a[x := b].

The redex can appear anywhere inside a lambda term.

Definition 3.6. Beta reduction →β is a relation defined over lambda
terms by the rules

1. (λx.a)b→β a[x := b]

2.
a→β b

ac→β bc

3.
b→β c

ab→β ac

4.
a→β b

λx.a→β λx.b

Beta reduction →β is a one step relation. The expression t →+
β u

states that t can be reduced to u in one or more β-reduction steps.
The expression t →∗

β u states that t can be reduced to u in zero or
more β-reduction steps.

Two terms t and u are called β-equivalent if t →∼
β u is valid.

Recall from section 2 that the equivalence closure 2.5 means that t
can be transformed into u by using zero or more beta reduction steps
in forward (reduction) or backward (expansion) direction.

Normal Forms

Definition 3.7. A λ-term is in normal form if it is a terminal element
of the β-reduction relation.

A λ-term is normalizing if it is a weakly terminating element of
the β-reduction relation.

A λ-term is strongly normalizing if it is a strongly terminating
element of the β-reduction relation.

21

In other words

• A λ-term is in normal form if it contains no reducible expression.

• A λ-term t is normalizing if there is a reduction path of zero or
more steps t→∗

β u where u is in normal form.

• A λ-term t is strongly normalizing if all reduction paths end up,
after zero or more steps, in some normal form.

Clearly all terms in normal form are trivially normalizing and
strongly normalizing.

3.2 Simple Computation with Combinators

In this subsection we demonstrate how lambda terms can be used to
do simple computations. We base our terms on combinators which
are closed lambda terms i.e. terms without free variables.

The simplest combinator is the identity combinator defined as

I := λx.x

where I is just an abbreviation for the term on the right hand side
of the definition. The lambda calculus does not know the term I, it
just knows terms like λx.x. We use I for us to formulate the calculus
more readable for humans.

The identity function takes one argument and returns exactly the
same argument which can be proved by application of the rules for
β-reduction

Ia = (λx.x)a definition of I
→β x[x := a] rule 1 of β-reduction
= a definition of substitution

.

The mockingbird combinator is defined as

M := λx.xx.

Birdnames are used in this text as the names for combinators to honor
Haskell Curry who is one of the inventors of combinatorial logic and
who loved to watch birds and to honor Raymond Smullyan who wrote
the book To Mock a Mockingbird [4] using birds and forests and puz-
zles about them to teach combinatorial logic in an entertaining and
amusing way.

22

The mockingbird combinator receives one argument and applies
it to itself. The term MM has the interesting property to reduce to
itself

MM = (λx.xx)M definition of M
→β (xx)[x := M] rule 1 of β-reduction
= MM definition of substitution

so that we have
MM →β MM →β MM . . .

which represents the simplest form of an endless loop in lambda cal-
culus.

A very important combinator is the kestrel

K := λxy.x

which receives two arguments and returns the first, easily proved by

Kab = (λxy.x)ab definition of K
= (λx.λy.x)ab shorthand expanded
→β (λy.x)[x := a] b rule 1 of β-reduction
= (λy.a)b definition of substitution
→β a[y := b] rule 1 of β-reduction
= a definition of substitution

.

The kestrel shows that λ-terms can in some way store values. If
we apply the kestrel K only to one argument a we get λy.a. This term
stores the value a within the abstraction. If later the term receives
its second argument it spits out the stored value a ignoring its second
argument.

The companion of the kestrel is the kite with the definition

KI := λxy.y

which receives two arguments and returns always the second i.e.

KIab→+
β b

which can be proved in a similar manner.
A combinator with the same behaviour as the kite can be con-

structed as an application of the kestrel to the identity function

KI

23

where
KI →β λy.I

so that we get

KIab→β (λy.I)ab→β Ib→β b.

Note that KI is not α-equivalent to KI , but both terms are β-
equivalent because they reduce to the α-equivalent terms λyx.x and
λxy.y.

The kestrel applied to one argument stores the argument a returns
it by ignoring the second argument. The trush stores its first argument
as well but in a more interesting manner

T := λxf.fx.

The trush stores its first argument and waits until it receives its second
argument. After receiving its second argument it uses the second
argument as a function and applies it to the first argument.

Even more interesting in its storage behaviour is the vireo, defined
as

V := λxyf.fxy.

The vireo applied to two arguments stores the arguments (i.e. it
stores a pair of values). After receiving its third argument it applies
the third argument as a function to the two stored values. Com-
bining the vireo, the kestrel and the kite we can encode pairs. V ab
stores the pair (a, b) and V abK returns the first element of the pair
and V abKI returns the second element of the pair i.e. V abK →+

β a

and V abKI →+
β b which can be proved by using the definitions and

applying β-reduction and substitution.

Summary of Combinators Computing with λ-terms is purely
mechanical, but it can be tedious if the terms become more compli-
cated. Combinators serve as a kind of abstraction layer to make it
easier to manipulate and prove assertions about lambda terms.

Having a definition of an combinator e.g. the kestrel

K := λxy.x,

the concrete definition is usually not necessery once the crucial prop-
erty of the kestrel

Kab→+
β a

24

has been proved to be valid.
In this text we don’t use complicated λ-terms. We always use

combinators with their corresponding properties to express compactly
our claims and proves of these claims.

In the following table the most important combinators together
with their specifications and implementations are summarized.

Name Abbreviation Specification Implementation

Bluebird B Bfgx→+
β f(gx) λfgx.f(gx)

Identity I Ix→β x λx.x

Kestrel K Kxy →+
β x λxy.x

Kite KI KIxy →+
β y λxy.y

Mockingbird M Mx→+
β xx λx.x x

Starling S Sfgx→+
β fx(gx) λfgx.fx(gx)

Trush T Txf →+
β f x λxf.f x

Turing U Uxf →+
β f(xxf) λxf.f(xxf)

Vireo V V xyf →+
β fxy λxyf.fxy

3.3 Confluence - Church Rosser Theorem

A lambda term might contain more than one reducible expression.
The β-reduction relation is therefore non-deterministic, you can choose
any reducible expression to do a β-reduction step.

Therefore the question arises, if different reduction paths end up
at the same result. Is β-reduction confluent?

Remember that confluence is a rather strong property as explained
in the section Inductive Sets and Relations 2. Confluence guaran-
tees the uniquess of terminal elements (or normal forms in λ-calculus
speak) provided that they exist.

In order to prove that β-reduction is confluent we have to prove
that →∗

β is a diamond, i.e. that

a →∗
β b

↓∗β ↓∗β
c →∗

β ∃d

is valid.

β-reduction is not a diamond If→β were a diamond we would
be ready, because a diamond is confluent as proved in 2.18. Unfortu-
nately →β is not a diamond for the following reason:

25

The core of the reduction relation is (λx.a)b →β a[x := b] where
(λx.a)b is the reducible expression. Both subterms a and b might
contain further reducible expressions. Since the variable x might be
contained in the expression a zero, one or more times all reducible
expressions of b can be contained in a[x := b] zero, one or more times.

If b contains a reducible expression a reduction step b →β c is
possible for some c. We have the situation that two reduction paths
are possible

(λx.a)b →β a[x := b]
↓β

(λx.a)c →β a[x := c]
.

There are 3 cases:

• Case variable x does not occur in a: Then a[x := b] and a[x := c]
are the same expression and since →β is not reflexive there is no
way to complete the diagram.

• Case variable x does occur once in a: Then a[x := b]→β a[x := c]
is a valid reduction step and the diagram can be completed.

• Case variable x does occur 2 or more times in a: Then a[x := b]
cannot be reduced to a[x := c] in one step. 2 or more steps are
necessary.

Properties of→∗
β As explained in the section Diamonds and Con-

fluence 2.3 we can search for properties of→∗
β which indicate that→∗

β

is a diamond and use these properties to construct a diamond between
→β and →∗

β.
→∗

β has the property that it can do zero or more reduction steps in
parallel in any subexpression of a lambda expression. I.e. intuitively
the following rules are valid:

1. a→∗
β a

2.
a→∗

β b

λx.a→∗
β λx.b

3.
a→∗

β b, c→∗
β d

ac→∗
β bd

4.
a→∗

β b, c→∗
β d

(λx.a)c→∗
β b[x := d]

Although evident by intuition we have to prove these properties.

26

Theorem 3.8. →∗
β satisfies

a→∗
β b c→∗

β d

ac→∗
β bd

.

Proof by induction on a→∗
β b.

1. Goal ac →∗
β ad assuming c →∗

β d. Proof by subinduction on
c→∗

β d

(a) Case c = d. Trivial by reflexivity.

(b) Goal ac →∗
β ae. Premises c →∗

β d and d →β e. Induction
hypothesis ac→∗

β ad.
c →∗

β d →β e

⇓1 ⇓2
ac →∗

β ad →β ae

⇓3
ac →∗

β ae


⇓1 by induction hypothesis. ⇓2 by rule 3 of β-reduction. ⇓3
by rule 2 of reflexive transitive closures.

2. Goal ac →∗
β ed. Premises a →∗

β b and b →β e. Induction hy-
pothesis ac→∗

β bd.
a →∗

β b →β e

⇓1 ⇓2
ac →∗

β bd →β ed

⇓3
ac →∗

β ed

.
⇓1 by induction hypothesis. ⇓2 by rule 2 of β-reduction. ⇓3 by
rule 2 of reflexive transitive closures.

Theorem 3.9. →∗
β satisfies

a→∗
β b c→∗

β d

(λx.a)c→∗
β b[x := d]

.

Proof in the same manner as the previous theorem with induction on
a→∗

β b and then a subinduction on c→∗
β d for the reflexive case.

Theorem 3.10. →∗
β satisfies

a→∗
β b

λx.a→∗
β λx.b

.

Proof in the same manner as the previous theorems without the need
of a subinduction because there is only one premise.

Definition of Parallel β-reduction Now that we have the found
the properties of →∗

β which point into the direction that it is a dia-
mond we can use these properties as rules to define the least relation
satisfying these properties.

27

Definition 3.11. Parallel beta reduction →p is a relation defined over
lambda terms by the rules

1. a→p a

2.
a→p b

λx.a→p λx.b

3.

a→p c
b→p d

ab→β cd

4.

a→p c
b→p d

(λx.a)b→p c[x := d]

Obviously β-reduction is a subset of parallel β-reduction.

Lemma 3.12. Beta reduction is a subset of parallel beta reduction
i.e. a→β b⇒ a→p b. Proof by induction on a→β b. Trivial because
each rule of →β is a special case of some rule of →p.

Parallel β-Reduction is a Diamond In order to prove that
→p is a diamond we need some lemmas.

Lemma 3.13. Parallel beta reduction preserves abstraction i.e. λx.a→p

c⇒ ∃b : a→p b ∧ c = λx.b. Proof by induction on →p.

1. c = λx.a. Trivial. Take b = a.

2. λx.a→p λx.b with a→p b. Trivial. Take b.

3. The case λx.a = tu is syntactically impossible. Abstraction and
application are different.

4. The case λx.a = (λx.u)v is syntactically impossible. Abstraction
and application are different.

Lemma 3.14. Basic compatibility of substitution and parallel reduc-
tion. t →p u ⇒ a[x := t] →p a[x := u]. Proof by induction on the
structure of a.

1. a is a variable. Goal z[x := t] →p z[x := u]. Case z = x
is satisfied because of the assumption t →p u. Case z ̸= x is
satisfied by reflexivity z →p z.

28

2. a is an application b c. Goal (bc)[x := t]→p (bc)[x := u]

(bc)[x := t] = b[x := t] c[x := t] definition of substitution
→p b[x := u] c[x := u] ind hypo + rule 3
= (bc)[x := u] definition of substitution

3. a is an abstraction λy.b. Goal (λy.b)[x := t]→p (λy.b)[x := u].

(λy.b)[x := t] = λy.b[x := t] definition of substitution
→p λy.b[x := u] ind hypo + rule 2
= (λy.b)[x := u] definition of substitution

Lemma 3.15. Full compatibility of substitution and parallel reduc-
tion. a →p c ∧ b →p d ⇒ a[x := b] →p c[x := d]. Proof by induction
on a→p c.

1. a = c. Prove by the previous lemma.

2. Goal (λy.a)[x := b] →p (λy.c)[x := d]. Premise a →p c. Induc-
tion hypothesis a[x := b]→p c[x := d]

(λy.a)[x := b] = λy.a[x := b] definition substitution
→p λy.c[x := d] induction hypo + rule 2
= (λy.c)[x := d] definition substitution

.

3. Goal (ae)[x := b] →p (cf)[x := d]. Premises a →p c, e →p f .
Induction hypotheses a[x := b]→p c[x := d], e[x := b]→p f [x :=
d]

(ae)[x := b] = a[x := b] e[x := b] definition substitution
→p c[x := d] f [x := d] induction hypo + rule 3
= (cf)[x := d] definition substitution

.

4. Goal
(
(λy.a)c

)
[x := b] →p

(
e[y := f]

)
[x := d]. Premises a →p

e, c →p f . Induction hypotheses a[x := b] →p e[x := d], c[x :=
b]→p f [x := d]

((λy.a)c)[x := b] = (λy.a[x := b]) c[x := b] definition substitution
→p e[x := d]

[
y := f [x := d]

]
induction hypo + rule 4

=
(
e[y := f]

)
[x := d] substitution swap lemma

29

Theorem 3.16. Parallel reduction→p is a diamond i.e.
a →p b
↓p ↓p
c →p ∃d

.

Proof by induction on a→p b.

1. Trivial reflexive case.
a →p a
↓p ↓p
c →p c

2. Goal
λx.a →p λx.b
↓p ↓p
λx.c →p ?

. Parallel reduction preserves abstraction.

Therefore the specific λx.c instead of the more general c. The
premises a→p b, a→p c and the induction hypothesis guarantee
the existence of a d such that λx.d is the element to fill the gap.

3. Goal
ae →p bf
↓p ↓p
c →p ?

. Premises a→p b, e→p f . Proof by subinduc-

tion on ae→p c.

(a) Trivial reflexive case.

(b) Syntactically impossible

(c) Goal
ae →p bf
↓p ↓p
gh →p ?

.

The premises a →p b, a →p g, e →p f, e →p h with the
corresponding induction hypotheses guarantee the existence
of two element k and m so that km can fill the missing
element in the goal.

(d) Goal
(λx.a)e →p (λx.b)f
↓p ↓p

c[x := g] →p ?
. Parallel reduction preserves

abstraction. Therefore the specific λx.b in the upper right
corner. The premises a →p b, a →p c, e →p f, e →p g and
the corresponding induction hypotheses guarantee the ex-
istence of two elements d and h so that d[x := h] fills the
missing element in the goal.

4. Goal
(λx.a)e →p b[x := f]
↓p ↓p
c →p ?

. Premises a →p b, e →p f . Proof

by subinduction on (λx.a)e→p c.

30

(a) Trivial reflexive case.

(b) Syntactically impossible

(c) Mirror image of case 3d, just flipped at the northwest-southeast
diagonal.

(d) Goal
(λx.a)e →p b[x := f]
↓p ↓p

c[x := g] →p ?
The premises a →p b, a →p

c, e→p f, e→p g and the corresponding induction hypothe-
ses guarantee the existence of two elements d and h so that
d[x := h] fills the missing element in the goal.

β-Reduction is Confluent

Theorem 3.17. Beta reduction is confluent. Proof: With the paral-
lel beta reduction→p we have found a diamond relation between beta
reduction →β and its transitive closure →∗

β. According to the conflu-
ence theorems of the chapter “Inductive Sets and Relations” this is
sufficient to prove the confluence of beta reduction.

31

4 Computable Functions

4.1 Boolean Functions

Boolean Values In lambda calculus there are no primitive data
types. All lambda terms are functions. If we want to represent boolean
values in lambda calculus we have to ask What can be done with a
boolean value?

Evidently boolean values can be used to decide between alterna-
tives. We can make the convention that the boolean value true always
decides for the first alternative and the boolean value false always de-
cides for the second alternative.

In the section Lambda Terms 3 we have already seen the combi-
nator kestrel K which always returns the first argument of two argu-
ments and the kite KI which always returns the second argument of
two arguments. Therefore we use the definitions

true := K
false := KI

Definition 4.1. A lambda term t defines a boolean value if it reduces

to true or false in zero or more steps i.e. if t→∗
β

{
true

false
is valid.

Boolean Functions

Definition 4.2. A lambda term t represents an n-ary boolean func-
tion if given n arguments b1, b2, . . . bn reduces to a boolean value i.e.
if

tb1b2 . . . bn →∗
β

{
true

false

is valid.

Negation Boolean negation must be a function taking one boolean
argument and returning a boolean value which is a two argument
function representing a choice.

Remember the vireo which has the specification V abf →+
β fab.

The term V false true stores the two boolean values and waits for the
function to apply it to the two stored values. If we provide a boolean
value it selects false in case its value is true and true in case its value is

32

false. This is exactly the specifaction of boolean negation. Therefore
we define

(¬) := V false true.

Note that we use the logical symbol ¬ to represent the lambda term
for boolean negation and we use the same symbol to denote negation
on a logical level. It should be clear from the context wheather the
lambda term or the logical symbol is meant.

Conjunction The expression a∧b where a and b represent boolean
values shall return b in case that a represents true and a otherwise.
Its nearly trivial to define a lambda expression which has exactly this
behaviour

(∧) := λab.aba.

Disjunction The lambda term representing disjunction can be de-
fined as

(∨) := λab.aab.

You can verify the validity of this definition by applying the definition
to all 4 possible cases of the truth table of disjunction.

4.2 Composition of Decomposition of Pairs

In order to represent pairs in lambda calculus we have to ask the
question What can be done with a pair?. The most natural answer:
Extract either the first or the second element.

We have seen already the vireo V which stores two values and waits
for the third argument to apply the third argument to the first two
values. We have the kestrel K to select the first element and the kite
KI to select the second element. Therefore we can define the lambda
terms

pair := V
fst := λp.pK
snd := λp.pKI

.

Let us verify that the definitions are correct

fst (pair a b) = (λp.pK)(V ab) definitions
→β (pK)[p := V ab] β-reduction
= V abK substitution
→+

β Kab specification of V

→+
β a specification of K

33

In the same manner the validity of snd (pair a b) →+
β b can be

verified.

4.3 Numeric Functions

Numbers are represented by lambda terms as iterations. The lambda
term cn representing the natural number n takes two arguments, a
function f and a start value a and iterates the function f n times
beginning with the start value a.

Definition 4.3. The n iteration of the function f on the start value
a is defined as

fna :=

{
f0a := a

fn′
a := f(fna)

where n′ denotes the successor of the natural number n.

Church Numeral

Definition 4.4. The church numeral cn defined as

cn := λfa.fna

is the lambda term representing the natural number n.

Definition 4.5. The lambda term t represents a number if it reduces
in zero or more steps to a church numeral i.e. if

t→∗
β cn

is valid for some n.

Definition 4.6. The term t represents an n-ary numeric function
if given n arguments a1, a2, . . . , an each one representing a number
reduces in zero or more steps to a church numeral i.e. if

ta1a2 . . . an →∗
β cm

is valid for some number m.

Definition 4.7. The term t represents an n-ary numeric predicate
if given n arguments a1, a2, . . . , an each one representing a number
reduces in zero or more steps to a boolean value i.e. if

ta1a2 . . . an →∗
β

{
true

false

is valid.

34

Zero Tester A zero tester is a unary predicate on church numerals.
It should return true if the number is the church numeral c0 and false
for all other church numerals.

Remember that church numerals are functions with a function ar-
gument f and a start value argument a which iterate the function n
times starting at a. Therefore c0fa always returns a regardless of the
function f . So our zero tester can have the shape

λx.xf true

which does already the right thing if applied to the argument c0.
Now we need a lambda term for the iterated function f . The

kestrel K applied to two arguments always returns the first argument.
If applied only to one argument, it stores the argument and spits it
out if it is applied to the second argument. Therefore K false always
returns false for any argument. So we can use K false as the function
argument f in the above template.

A valid definition of a zero tester is

0? := λx.x(K false) true.

Proof:
0? c0 = (λx.x(K false) true)c0

→β (x(K false) true)[x := c0]
= c0(K false) true
→+

β true

0? cn′ = (λx.x(K false) true)cn′

→β (x(K false) true)[x := cn′]
= cn′(K false) true
= (K false)((K false)n true)
→β false

Successor Function A lambda term representing the successor
function takes a church numeral and returns a church numeral repre-
senting the successor of its argument. The signature of the successor
function must be

λxfa. · · ·

where the first argument x is the church numeral and the result must
be a church numeral i.e. a function taking two arguments.

35

We know that the term xfa where x represents a church numeral
already does n iterations of f on n. The successor function just has
to do one more iteration

succ := λxfa.f(xfa).

We prove the desired property succ cn →∗
β cn′ by

succ cn = (λxfa.f(xfa))cn definition
→β λfa.f(cnfa) β-reduction
= λfa.f(fna) definition of cn
= λfa.fn′

a) definition of fna
= cn′ definition of cn′

4.4 Primitive Recursion

The addition of natural numbers is defined recursively as

(+) :=

{
0 +m := m

n′ +m := (n+m)′

However lambda calculus does not work on numbers, it works on
church numerals representing numbers. Wouldn’t it be nice to de-
fine a lambda term (+) representing to addition of two lambda terms
representing numbers as

(+) :=

{
c0 +m := m

cn′ +m := succ (n+m)

And indeed, this is possible. We just have to explain how the
definition is mapped into lambda calculus.

Note that, strictly spoken, the expression a+ b where a, b and (+)
are lambda terms is not a lambda term according to our syntactic
definition. In order to be precise we have to define a lambda term
“plus” which represents the addition function and write “plus a b” in-
stead of the expression a + b. However the latter is better readable
and therefore we use it to denote the more cumbersome expression
“plus a b”.

For convenience we use in the following the notation x to represent
n arguments x1x2 . . . xn and gx to represent the function application
gx1x2 . . . xn i.e.

x := x1x2 . . . xn
gx := gx1x2 . . . xn

.

36

Suppose we have a lambda term g representing an n-ary numeric
function and a lambda term h representing an n′′-ary numeric func-
tion. Then in order to define an n′-ary function f we can write

f :=

{
fc0x := gx

fcn′x := h(fcnx)cn′x

and interpret this definition as an iteration in the following manner:

• A pair of to church numerals ci and cj is used to represent the
state of the iteration. The first numeral ci represent the number
of iterations done and the second numeral represents the inter-
mediary result.

• The iteration is started with p0 := pair c0 (gx).

• The step function is represented by the lambda term

s := λp.pair i(hjix)

where i := succ(fst p) and j := snd p.

The step function extracts the iteration counter and the interme-
diate result from the pair p and constructs a new pair by applying
the successor function to the iteration counter and the function
h to the intermediate result and the remaining arguments.

• The function f is defined by the lambda term

f := λyx.y s p0

where y is a church numeral representing the first argument and
x is the array of church numerals representing the remaining n′

arguments. Remember that the expression ysp0 iterates the step
function s over its intial value p0 as long as y is a church numeral.

4.5 Some Primitive Recursive Functions

With the method of the last section we can define a lot of numeric
functions.

Addition

(+) :=

{
c0 +m := m

cn′ +m := succ (cn +m)

37

Multiplication

(×) :=

{
c0 ×m := c0

cn′ ×m := m+ cn ×m

Exponentiation

•• :=

{
ac0 := c1

acn′ := a× acn

Factorial

(!) :=

{
c0! := c1

cn′ ! := cn′ × cn!

Predecessor

pred :=

{
pred c0 := c0

pred cn′ := cn

Difference
(−) := λab.bpred a

The term cn − cm applies the predecessor function m times to cn.
The result is the difference if n > m or c0 if n ≤ m.

Comparison
(≤) := λab. 0? (a− b)

Strict Comparison

(<) := λab. succ a ≤ b

Numeric Equality

(≡) := λab. a ≤ b ∧ b ≤ a

The symbol = is already reserved for exact equality or α-equivalence
of lambda terms. Therefore the symbol ≡ is used to denote the lambda
term which represents the equality function for church numerals.

38

Bounded Minimization Let g be a lambda term representing an
n′-ary predicate over church numerals. Then it makes sense to ask, if
there is a least number y which makes gyx true. The expression µygx
should return this least number or y in case that there is no number
strictly below y such that gyx is satisfied.

µ :=

{
µc0gx := c0

µcn′gx :=
(
λz. (gzx)z(succ z)

)
(µcngx)

Once µcngx satisfies the predicate, the number remains constant
throughout the iteration. As long as µcngx does not yet satisfy the
predicate, the successor is tried until the predicate is satisfied or upper
limit is reached.

Division
(÷) := λab. µa (λx.a < succx× b)

This function only works correctly if the divisor b is not zero. It
computes the least church numeral x such that succx × b is greater
than the church numeral a. In that case the church numeral x × b is
exactly a or leaves some remainder less than b.

Divides Exactly The term a | b shall return true if a divides b
without remainder, otherwise it shall return false. The definition

(|) := λab.¬ a ≡ c0 ∧ (b÷ a)× a ≡ b

satisfies this requirement.

Prime Number Tester

Pr? := λx. c2 ≤ x ∧ x ≡ µx(λz. c2 ≤ z ∧ z | x)

The term µx(λz. c2 ≤ z∧ z | x) computes the least church numeral
z strictly below x which is greater or equal c2 and divides x exactly.
If this number does not exist, the term computes x. In that case x is
a prime number.

39

i-th Prime Number We need a function Pr such that Pr c0 com-
putes c2, Pr c1 computes c3, Pr c2 computes c5 . . .

If z is a prime number then there is a prime number between z
and z!′. We can use this fact to define Pr recursively.

Pr :=

{
Pr c0 := c2

Pr cn′ :=
(
λz. µsucc z!(λy. Pr y ∧ z < y)

)
(Pr cn)

Prime Exponent If we have a church numeral x we want to be
able to compute the exponent e of the ith prime number such that
(Pr i)e divides x exactly. The term Prexpix shall compute the expo-
nent.

The definition

Prexp := λix. µx(λe.¬ (Pr i)succ e | x)

satisfies that requirement.

Encode Pairs of Church Numerals into a Church Nu-
meral We can map a pair of natural numbers n and m into another
natural number by the formula

2n(2m+ 1)− 1.

It is not too difficult to see that both numbers n and m can be recov-
ered from a number k to which the pair has been mapped i.e. that
the mapping is bijective. The number n is the exponent of the prime
factor of 2 in z + 1. Then the number m can be found in an obvious
way from z+1

2n .
We have already defined all functions to compute the mapping σ2

and its two inverses σ21 and σ22 as lambda terms.

σ2 := λab. c2
a × (c2 × b+ c1)− c1

σ21 := λx.Prexpc0(succx)
σ22 := λx. (pred (succx÷ c2

σ21x))÷ c2

Note that this encoding of pairs of church numerals is completely
different from the lambda term pair and its inverses fst and snd. The
latter functions encode pairs of arbitrary lambda terms and extract
the first and the second component of the pair while the functions σ2,
σ21 and σ22 perform an arithmetic encoding of pairs of numbers and
extract the first and the second number of the pair of numbers.

40

4.6 General Recursion

The Problem Suppose we have a lambda term g representing an
n′-ary predicate and we know that for all arrays of church numerals x
there exists a church numeral y such that gyx is satisfied.

If we had the ability to program a loop in lambda calculus we could
start an unbounded iteration at the church numeral c0 and stepwise
increase the number by one until the predicate g is satisfied.

Unfortunately we just know that a number exists, but we are not
able to specify any bound in order to use the bounded µ operator as
done in the previous chapter.

Step Function In order to program some unbounded search in
lambda calculus we need a function which performs one step in this
search, i.e.

• Check if the boolean expression gyx is satisfied.

• If yes, return y.

• If no, apply a next step on succ y.

The last point would be a recursive call. Unfortunately we have no
direct means to perform a recursive call in lambda calculus. Therefore
we define the step function s in a way that it receives the function f
which does the next step as an argument

s := λgxfy. (gyx)y
(
f(succ y)

)
.

Turing Combinator Now we need a method to perform the un-
bounded search. Remember the specification of the turing combinator

Uaf →+
β f(aaf).

If we use instead of the term a the turing combinator U and add
an additional argument y we get the potential infinite loop

UUfy →+
β f(UUf)y →+

β f(f(UUf))y →+
β · · ·

Now let’s see what happens if we use sgx for f and cm for y:

UUfcm →+
β sgx(UUf)cm
→+

β (gcmx)cm
(
UUf(succ cm)

) .

The term returns cm if gcmx is satisfied. Otherwise it starts the
next iteration on succ cm.

41

Unbounded Minimization Having all this, we can define the
unbouded µ operator which receives an n′-ary predicate g, an n array
of church numerals x such that the µ operator returns the least church
numeral y which satisfies the predicate gyx if such a term exists

µ := λgx. UU(sgx)c0

where s is the above defined step function.

42

5 Undecidability

In the section Computable Functions 4 we have defined a class of nu-
meric functions and predicates which can be computed in lambda cal-
culus. We call this class of functions/predicates lambda-computable.

Now the question arises: Are there functions or predicates which
are not lambda computable? The answer to this question is yes. This
section of the paper proves that there are undecidable predicates.

In order to prove the existence of undecidable predicates we use
sets of lambda terms A which are closed and nontrivial. We make this
precise by the following definitions.

Definition 5.1. A set of lambda terms A is closed if it contains
with each lambda term t also all lambda terms which are α- and β-
equivalent to t.

Definition 5.2. A set of lambda terms A is nontrivial if it is neither
empty nor does it contain all possible lambda terms.

Gödel Numbering Since computable lambda function operate
on church numerals we have to transform a lambda term t into a
church numeral ⌜t⌝ which is a description of the lambda term t in a
way that having the church numeral the corresponding term can be
reconstructed. We define ⌜t⌝ by

⌜⌝ :=


⌜xi⌝ := σ2c0ci

⌜ab⌝ := σ2c1(σ2⌜a⌝⌜b⌝)

⌜λxi.a⌝ := σ2c2(σ2⌜xi⌝⌜a⌝)

Note that ⌜⌝ is not a lambda term. It is easy, but very tedious, to
construct by hand for every lambda term t the corresponding lambda
term ⌜t⌝. However it is not possible to define a lambda term to do this
compilation because the lambda calculus cannot do pattern match on
lambda terms i.e. it cannot case split on the way the lambda term
t has been constructed. Later we define a lambda term which can
compute ⌜cn⌝ for church numerals cn.

Definition 5.3. A set A of lambda terms is decidable if there is a
lambda term pA representing a unary predicate on church numerals
such that pA⌜t⌝ returns true if t ∈ A and false if t /∈ A.

43

Self Application Since lambda calculus does not have any restric-
tions on functions and arguments (they only have to be valid lambda
terms) we can apply any lambda term t to its description ⌜t⌝ i.e. the
term

t⌜t⌝

is a legal lambda term.
Therefore we can define for all sets of lambda terms A a set BA by

BA := {b | b⌜b⌝ ∈ A}.

We assume that there is a lambda term self which satifies the
specification

self ⌜t⌝→+
β ⌜t⌜t⌝⌝.

A concrete definition of the lambda term self will be given later.
We can use the lambda term self to see that for every decidable set

of lambda terms A the set BA is decidable as well. Proof: The term

λx. pA(selfx)

is a unary predicate which given a description ⌜b⌝ of a term b decides
wheather b is an element of BA.

Basic Undecidability Theorem

Theorem 5.4. Every closed nontrivial set of lambda term A is un-
decidable.

Proof. Assume that A is decidable and pA is a lambda term which
decides A.

1. There are the termsm0 ∈ A andm1 /∈ A, because A is nontrivial.

2. We define the lambda term g by

g := λx.pA(selfx)m1m0

which has the property

g⌜b⌝→+
β

{
m1 if b ∈ BA

m0 if b /∈ BA

.

44

3. Assuming g ∈ BA leads to a contradition

g ∈ B ⇒ g⌜g⌝→+
β m1 definition of g

⇒ g⌜g⌝ /∈ A A is closed
⇒ g /∈ BA defintion of BA

4. Assuming g /∈ BA leads to a contradition

g /∈ B ⇒ g⌜g⌝→+
β m0 definition of g

⇒ g⌜g⌝ ∈ A A is closed
⇒ g ∈ BA definition of BA

5. Therefore the assumption that A is decidable cannot be valid.

Undecidability of Beta Equivalence

Theorem 5.5. Beta equivalence is undecidable.

Proof. Assume that beta equivalence is decidable.

1. Then there is some binary predicate p such that for two lambda
terms a and b the term p⌜a⌝⌜b⌝ returns true if they are beta
equivalent and false if they are not equivalent.

2. Let A be the set of lambda terms which contains a and all α-
and β-equivalent terms. Then by assumption the term p⌜a⌝ is a
decider for the set A.

3. The set A is nontrivial for the following reason: If a is normal-
izing than A can contain only normalizing terms. Therefore e.g.
the term MM where M is the mockingbird combinator which is
not normalizing is not in the set. If a is not normalizing then A
cannot contain any term in normal form.

4. The set A is closed and nontrivial, therefore it cannot be decid-
able which contradicts the assumption that there is a decider for
β-equivalence.

45

Undecidability of the Halting Problem Like the halting
problem for Turing machines there is a halting problem for lambda
calculus. The halting problem is solvable if there is a lambda term
which determines if another lambda term is normalizing.

Theorem 5.6. It is undecidable whether a lambda term a is normal-
izing.

Proof. Assume that there is a lambda term p such that p⌜a⌝ returns
true if a is normalizing and false if a is not normalizing.

1. Let A be the set which contains all lambda terms in normal form
and all α- and β-equivalent terms. By definition A is closed and
it is nontrivial (it contains all variables and it does not contain
MM .)

2. The lambda term p would be a decider for A, because a term a
must be in this set if it is normalizing.

3. The set A however being closed and nontrivial cannot be decid-
able which contradicts the assumption that being normalizing is
decidable.

Implementation of self In the proof of the main undecidability
theorem we used a lambda term self with the specification

self ⌜a⌝→+
β ⌜a⌜a⌝⌝.

Now we give the still missing implementation of that term. By
definition of ⌜⌝ the term we have the equality

⌜a⌜a⌝⌝ = σ2c1(σ2⌜a⌝⌜⌜a⌝⌝).

The only unknown term on the right hand side of the equality is
⌜⌜a⌝⌝ which is the description of the church numeral representing the
lambda term a.

Any church numeral has the form

cn = λfx.fnx.

Since the names of bound variables are irrelevant we use x0 for x and
x1 for f . By definition of ⌜⌝ we get

⌜x0⌝ = σ2c0c0
⌜x1⌝ = σ2c0c1

.

46

With the step function

s := λx. σ2c2(σ2 ⌜x1⌝x)

the term
cns⌜x0⌝

computes ⌜x1nx0⌝ and the function f defined by

f := λx.σ2c2(σ2⌜x1⌝x)

computes ⌜λx1.z⌝ given ⌜z⌝ as argument. I.e.

f(f(cns⌜x0⌝))

computes the church numberal ⌜λx1x0.x1nx0⌝. The term self can be
defined by

self := λx. σ2c1(σ2x(f(f(xs⌜x0⌝))))

47

References

[1] Turing A.M. On computable numbers, with application to the
entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1936/7.

[2] Alonzo Church. An unsolvable problem of elementary number
theory. Journal of Mathematics, 58:354–363, 1936.

[3] Kurt Gödel. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme. Monatshefte für Mathe-
matik und Physik, 38:173–198, 1931.

[4] Raymond Smullyan. To Mock a Mockingbird and Other Logic Puz-
zles. Knopf, 1985.

48

	Motivation
	Inductive Sets and Relations
	Inductive Sets
	Inductive Relations
	Diamonds and Confluence

	Lambda Terms
	Basic Definitions
	Simple Computation with Combinators
	Confluence - Church Rosser Theorem

	Computable Functions
	Boolean Functions
	Composition of Decomposition of Pairs
	Numeric Functions
	Primitive Recursion
	Some Primitive Recursive Functions
	General Recursion

	Undecidability

