Introduction to Red Black Trees
Helmut Brandl

Abstract

An introduction to red black trees.

Red Black Trees

An algorithm for insertion and deletion in a red black tree in a functional
setting is described. The description provides evidence for the correctness of the
algorithm.

A red black tree is not a trivial data structure. If you read the wikipedia article,
you have the impression, that insertion and deletion are really very complicated,
because there are many cases to distinguish. Especially deletion seems to be
mind bending.

In this article we describe an algorithm which reduces the necessary case analysis
to a minimum. We try to make the cases as orthogonal as possible, to make
them comprehensible.

Furthermore we provide evidence for the correctness of each step.

Link to an implementation of the described algorithm in Ocaml.
Implementation

Basics

Definition

A red black tree is either an empty tree or a node with a color, a left child, an
info element and a right child.

Each node has a color and the empty tree is considered black with a black height
of zero.

A definition in a functional language like ocaml looks like

https://github.com/hbr/albatross/blob/feature/ocaml/fmlib/basic/red_black.ml

type info = ... (* type of the information element, must be sortable *)
type color = Red | Black

type t = Empty | Node of color * t * info * t

Insertion and deletion is always done at the bottom. We insert a node by
replacing an empty tree with a singleton red node. We delete a node by replacing
a singleton node (i.e. a node with two empty children) with an empty node.

Invariant

1. A red node has only black children (an empty tree counts as black).

2. Every path from the root to an empty node contains the same number of
black nodes.

3. The inorder sequence is sorted i.e. a red black tree is a binary search tree.

Because the empty tree is considered black, a singleton red node does not violate
the invariant. It has two empty black children.

Examples:

one red node:
Rx
red node with children (only two black children possible):

Ry
Bx Bz

black node with one or two children:

By By By
Rx Rx Rz Bx Bz

If h is the black height of a red black tree, then the maximal height of the tree
is2 * h + 1. E.g. a singleton red node has black height 0 but height 1.

Insertion and deletion might create a violation of the invariant. Inserting a
singleton red node below a red node might create a red violation because there
are two red nodes in a row. Deleting a black node might create a black violation,
because its sibling has a black height of one and the empty node has a black
height of zero.

Insertion

Basics

A red black tree is sorted. If we want to insert an info element into a tree, we
search for it following the order relation of the info element. There are two
possiblilities.

1. We find a node with the info element we want to insert. There is nothing
to be done.

2. Our search ends at an empty tree. This is the place to insert a new
singleton red tree.

Let’s look at the path from the insertion point to the root node.

Rnew | BRBBR....

Rnew | RBRBB ...
In the first case we are ready, because no violation is created.

The second case is problematic, because we want to insert a red node below a
red parent. We know that the grandparent must be black. We could swap the
colors of the parent and the grandparent, creating a new red violation. This can
bubble up until we reach two black nodes in a row.

However the solution is not that simple, because stealing the blackness of a
parent might create two new other kind of violations. 1. The black parent might
have a red child. 2. The black height of a path of the other branch to which the
parent belongs reduces by one.

Algorithm

We can get a solution by satisfying the following insertion invariant: Inserting
an element into a valid red black tree results in one of the states:

1. A nonempty tree where the root color has been changed from black to red
and the new tree has the original black height.

2. A nonempty tree where the root color has not been changed and the new
tree has the original black height.

3. Insertion into a red rooted tree ends with a x b y ¢ where a, b and ¢ are
black rooted valid red black trees where the insertion has been successul in
one of them and x and y are two info elements separating them. The black
height of a, b and c is the black height of the original tree. Therefore we
cannot form a valid red black tree of the original height without creating a
red violation. The parent is black.

Note that all subtrees must be valid red black trees.
We have to prove that we can maintain the insertion invariant.

Initially we are in state 1. We insert the new element into an empty tree by
creating a singleton red tree. Because the empty tree is considered black rooted,
the root color has been changed from black to red. The new tree has the same
black height as the initial tree (namely zero) and the new tree is a valid red
black tree.

Now we have to consider inserting into a tree Node(color, left, info,
right). We only analyze the situation of inserting into the left child. Inserting
into the right child is symmetrical. We assume that insertion into the left
subtree ended in state 1, 2 or 3. We have to prove that insertion at the current
level ends either in state 1, 2 or 3 as well.

1. Insertion into left created a new tree Node(Red, a, x, b) and aand b
have the black height of the original tree left.

e color = Black: We create Node(Black, Node(Red,a,x,b), info,
right) and end in state 2.

e color = Red: We cannot create a new valid red black tree. Therefore
we end in state 3 with a x b info right. The next parent must be
black, because the current node is red.

2. Insertion into left created a new tree leftNew whose color has not been
changed. We remain in state 2 by returning Node(color, leftNew,
info, right)

3. Insertion into left ended up with a x b y c. The black height of a,
b and c¢ is the same as the black height of left. Because we are in
state 3, the color of the current node must be black. We end in state
1 and return Node (Red, Node (Black, a, x, b), y, Node (Black,
c, info, right)).

During insertion we have the following state diagramm.

++++++
I I
v I
1 - > 2 ++++
\
I \
[- > 3
I I
\=mmmmm /

If the insertion ends in state 1 or 2 at the root, then there is nothing to do. State
1 and 2 represent valid red black trees.

Ending in state 3 with a x b y c at the root we are allowed to introduce a new
black level and generate either Node (Black, a, x, Node (Red, b, y, c))
or Node (Black, Node (Red, a, x, b), y, ¢).

Comparison to Chris Okasaki’s Insertion Algorithm

In 1993 Chris Okasaki published an article named Red-Black Trees in a Functional
Setting as a functional pearl in the journal of functional programming. The
article described an insertion algorithm for red black trees in Haskell.

His algorithm is considered as the simplest possible insertion algorithm for red
black trees in functional programming. I claim that the here presented insertion
algorithm is even a little bit simpler than Chris Okasaki’s and understandable
without painting tree diagramms.

Furthermore it is more efficient, because

o It does in the rebalancing case only one case split and it does not need
deep pattern match.

o It introduces the state 2 where nothing more has to be done until the root
is reached.

Deletion

Deletion in a red black tree is more complicated than insertion. There are two
difficulties to master:

e The info element to be deleted might be located in an interior node which
has two non-empty children. We cannot just remove the node, because we
cannot insert the two children into the parent.

e Deletion in one of the children of a node might reduce the black height
of the child. Therefore the child with the deletion is no longer in balance
with respect to black height with its sibling.

Fortunately we can separate the two issues and solve them without interference.

Deletion of an Interior Node

If the interior node has two non-empty children, we cannot deleted the node.
However having two non-empty children, the leftmost element in the right child
is a direct neighbor of the info element of the interior node in the order relation.
We can delete the leftmost element and replace the info element of the interior
node with the info element of the deleted leftmost node.

However the node with the leftmost info element in the order relation might not
be the leftmost node in the right child. Let Node(color, left, x, right) be
the interior node to be deleted (i.e. x is the info element to be removed), then
we can have the following situation.

X
right

y
empty z

The leftmost info element in the order relation is y, but the node carrying the
info element is not a singleton node. The solution is simple: We remove the
bottom node carrying z and replace y with z and continue as if a node with info
element y had been deleted.

This procedure leads to the following requirement:

A removal function which removes an info element of a red black tree must
return an optional pair. The pair consists of a new tree where a node has been
deleted and the info element which has been deleted.

For removal we need two functions:
o remove_leftmost tree: optional (tree,deleted)
e remove element tree: optional (tree,deleted)

We can call remove_leftmost on an empty tree. In that case the function
returns nothing. I.e. we get an implicit test, if right is empty or not.

Deletion Invariant

Successful deletion of an element in a valid red black tree results in one of the
following two states:

1. The new tree has the same black height as the original tree and its color
remains the same or has been changed from red to black.

2. The new tree has a black height reduced by one. Its color is black and has
not been changed.

Note that state 1 does not create any problems. We can insert the new tree into
the parent node. It has the same black height, therefore both children still have
the same black height. Its color might have changed from red to black, therefore
cannot create a red violation.

State 2 is the problematic one. Since the black height has been reduced by one,
we cannot reinsert the new tree into its parent node. Its sibling has a different

black height. However the reduced tree is consistent. Since its color is black and
unchanged, it does not create any red violation.

In state 2 we have to reorganize the sibling and the parent to end up in state 1
or 2.

Deletion of a Singleton Node

Deletion of a singleton node initializes the invariant.

If the deleted node is red, we start in state 1. The black height is the same
(zero). Its color has changed from red to black.

If the deleted node is black, we start in state 2. Its black height has reduced by
one (from 1 to 0) and its color is unchanged and black.

Integrate a Subtree with Deletion into the Parent

Let’s assume we have Node(color, left, info, right) and have successfully
deleted one info element in the right child getting back rnew either in state 1 or
state 2 (we describe only deletion in the right child; deletion in the left child is
symmetrical). The black height of rnew is h >= 0 which depending on the state
is either reduced or not.

State 1 is trivial. We return Node(color, left, info, rnew) in state 1.

In state 2 we have to analyze the sibling left in order to see, how we can
reorganize the tree.

We know that the black height of left is h + 1, because we are in state 2. We
split up left to get subtrees of black height h or h + 1. We want a right subtree
of 1left which is black and has the black height h in order to combine it with
rnew without problems.

We have to distinguish the following four cases for left.

Bx Bx
a Bb a Ry
Bb Bc

Rx Rx
Ba+ By Ba+ By
b Bc b Rz
Bc Bd

Since left is a valid red black tree with black height h + 1, there are no other
possibilities. So we have the four ordered sequences

a x Bb
axybBc
at x b y Bc

at x by z Bd

where the rightmost subtree is always black (indicated by B). The subtrees a, b,
c and d have all a black height of h except for the last two sequences, where a
has a black height of h + 1 (indicated by +).

Now we have to do a case analysis distinguishing the two possible colors of the
parent node and combine the cases with the possible four cases of the sibling.

Parent color is red:

The sibling cannot be red. Therefore we have to consider only the first two cases
of the sibling.

We can create in both cases a new parent which has black height h + 1 and
whose color is either unchanged or changed from red to black. I.e. we end in
state 1. Here are the two possibilities for the new parent node. It is not difficult

to verify the invariants of the red black tree and the conditions for reaching state
1.

Bx <--— h + 1; state 1
a Rinfo
Bb rnew

Ry <-— h + 1; state 1
Bx Binfo
a b Bc rnew

Parent color is black:

In that case all four cases for the sibling are possible. In order to end up in state
1 we have to build a new parent with black height h + 2. In order to reach state
2, it is sufficient to build a new parent node with black height h + 1.

Bx <-- h + 1; state 2
a Rinfo
Bb rnew
By <--— h + 2; state 1
Bx Binfo
a b Bc rnew

Bx <-- h + 2; state 1

a+ By
b Binfo
Bc rnew
Bx <-— h + 2; state 1
a+ Rz
By Binfo
b c Bd rnew

Termination of Deletion

The deletion algorithm terminates if we reach the root. Since our deletion
invariant guarantees valid red black trees in each state, there is nothing more to
be done.

Summary

We have described insertion and deletion in a red black tree. The cases to be
analyzed have been minimized.

¢ Insertion is done by maintaining an insertion invariant with 3 states. Only
one state describes a red black tree with a red violation of the invariant.
The insertion algorithm just needs a case split on the color of the parent
node in one of the states. In the other two states, no case analysis is
necessary.

e Deletion is done by maintaining a deletion invariant with 2 states. None of
the states contains a tree with a violated invariant. However restructuring
with the sibling might be necessary if the black height has been reduced.
The restructuring requires only four cases in the sibling of the reduced
node and two cases for the possible color of the parent.

	Red Black Trees
	Basics
	Definition
	Invariant

	Insertion
	Basics
	Algorithm
	Comparison to Chris Okasaki's Insertion Algorithm

	Deletion
	Deletion of an Interior Node
	Deletion Invariant
	Deletion of a Singleton Node
	Integrate a Subtree with Deletion into the Parent
	Termination of Deletion

	Summary

